
- •А.М. ГОЛИКОВ
- •Учебное пособие:
- •Томск 2018
- •Учебное пособие
- •История развития криптографии
- •Основные характеристики открытого текста
- •Классификация шифров
- •Шифры перестановки
- •Шифр Хилла
- •Шифры сложной замены
- •Линейный конгруэнтный генератор
- •Регистр сдвига с линейной обратной связью
- •Блочные и поточные системы шифрования
- •Принципы построения блочных шифров
- •Основной шаг криптопреобразования.
- •Базовые циклы криптографических преобразований.
- •Основные режимы шифрования.
- •Простая замена
- •Гаммирование
- •Гаммирование с обратной связью
- •Выработка имитовставки к массиву данных.
- •Американский стандарт шифрования данных DES
- •Основные режимы шифрования
- •Блочный криптоалгоритм RIJNDAEL и стандарт AES
- •Математические предпосылки
- •Сложение
- •Описание криптоалгоритма
- •Раундовое преобразование
- •Атака “Квадрат”
- •Предпосылки
- •Базовая атака “Квадрат” на 4 раунда
- •Добавление пятого раунда в конец базовой атаки “Квадрат”
- •Добавление шестого раунда в начало базовой атаки “Квадрат”
- •Поточные системы шифрования
- •Поточные режимы блочных шифров
- •Строительные блоки поточных шифров
- •Регистры сдвига с обратной связью
- •Регистры сдвига с линейной обратной связью
- •Генераторы на основе LFSR
- •Регистры сдвига с нелинейной обратной связью
- •Регистры сдвига с обратной связью по переносу
- •Поточный шифр HC-128
- •Инициализация
- •Генерация ключевого потока
- •Поточный шифр Rabbit
- •Инициализация
- •Поточный шифр Salsa20
- •Хеш-функция Salsa20
- •Инициализация
- •Функция шифрования Salsa20
- •Поточный шифр SOSEMANUK
- •SERPENT и его производные
- •Инициализация
- •Генерация ключевого потока
- •Поточный шифр F-FCSR-H
- •Генерация ключевого потока
- •Инициализация
- •Поточный шифр Grain-128
- •Генерация ключевого потока
- •Инициализация
- •Поточный шифр MICKEY-128
- •Инициализация
- •Генерация ключевого потока
- •Поточный шифр Trivium
- •Инициализация
- •Генерация ключевого потока
- •Гаммирование
- •Гаммирование с обратной связью
- •Блочный шифр AES в поточном режиме
- •Функция зашифрования
- •Расширение ключа
- •Функция расшифрования
- •Режим обратной связи по шифртексту (CFB)
- •Режим обратной связи по выходу (OFB)
- •Режим счетчика (Counter mode)
- •Методы оценки качества алгоритмов поточного шифрования
- •1. Период
- •2. Криптоанализ шифров
- •3. Линейная сложность
- •4. Исчерпывающий поиск ключа
- •5. Time-memory-data trade-off атака
- •6. Корреляционная атака
- •Быстрая корреляционная атака
- •Алгебраическая атака
- •Атака различением
- •Статистический анализ гаммы шифров
- •Статистические свойства
- •Тестирование
- •Набор статистических тестов НИСТ
- •Частотный тест
- •Частотный тест внутри блока
- •Тест последовательностей
- •Тест наибольших последовательностей единиц в блоке
- •Тест рангов двоичных матриц
- •Спектральный тест
- •Тест сравнения непересекающихся шаблонов
- •Тест сравнения пересекающихся шаблонов
- •Тест сжатия алгоритмом Зива-Лемпела
- •Тест линейной сложности
- •Тест серий
- •Энтропийный тест
- •Тест совокупных сумм
- •Тест случайных отклонений
- •Вариант теста случайных отклонений
- •Анализ результатов тестирования
- •Исследование производительности шифров
- •Rabbit
- •Salsa20/12
- •Salsa20/12
- •Sosemanuk
- •Выводы
- •Цель работы Изучить криптографический стандарт шифрования ГОСТ 28147-89 и его особенности, познакомиться с различными режимами блочного шифрования.
- •Порядок выполнения работы
- •Контрольные вопросы
- •Интерфейс учебно-программного комплекса
- •Главное окно
- •Пункт меню “Файл”
- •Пункт меню “AES”
- •Режимы ECB, CBC, CFB, OFB
- •Режим ECB (Electronic Code Book – режим электронной кодовой книги)
- •Режим CBC (Ciphertext Block Chaining – режим сцепления блоков шифротекста)
- •Режим CFB (Ciphertext Feedback – обратная связь по шифротексту)
- •Режим OFB (Output Feedback – режим обратной связи по выходу)
- •Описание алгоритма
- •Безопасность
- •Программная реализация
- •Заключение
- •Общее описание лабораторной работы
- •Общий вид окна учебной программы
- •Требования к размещению файлов
- •Необходимые знания
- •Загрузка варианта
- •Выбор вероятных составляющих
- •Нахождение вероятной части ключа
- •Определение положения отводов
- •Поиск начального заполнения
- •Получение гаммы
- •Получение открытого текста
- •Отчет о проделанной работе
- •Сообщения выдаваемые в процессе работы
- •Сообщения об ошибках
- •Сообщения-вопросы
- •Критические ошибки
- •Пример
- •Асимметричные криптосистемы [8 -14]
- •Предпосылки появления асимметричных криптосистем
- •Обобщенная схема асимметричной крипосистемы
- •Алгебраическая обобщенная модель шифра
- •Односторонние функции
- •Факторизация
- •Дискретный логарифм
- •Криптосистема RSA
- •Основные определения и теоремы
- •Алгоpитм RSA
- •Процедуры шифрования и расшифрования в криптосистеме RSA
- •Криптосистема Эль-Гамаля
- •Комбинированный метод шифрования
- •Метод экспоненциального ключевого обмена Диффи-Хеллмана
- •Алгоритмы практической реализации криптосистем с открытым ключом
- •Возведение в степень по модулю m
- •Алгоритм Евклида вычисления НОД
- •Вычисление обратных величин в кольце целых чисел
- •Генерация простых чисел
- •Атаки на алгоритм RSA
- •Практическая часть
- •Лабораторная работа 1
- •Ход работы
3. Линейная сложность
Одной из первых аналитических мер качества поточных шифров стала линейная сложность или линейный размах (linear span) шифрующей последовательности, которая определяется как длина L самого короткого LFSR, способного породить эту последовательность. Существует эффективный алгоритм, так называемый алгоритм Берлекампа-Мэсси, который быстро находит такой кратчайший LFSR после изучения всего лишь первых 2L бит шифрующей последовательности. По своей сути алгоритм БерлекампаМэсси является универсальной криптоаналитической атакой на генераторы гаммы, поскольку несет в себе потенциал для замены любого шифргенератора его кратчайшим линейным эквивалентом. Таким образом, большая линейная сложность последовательности шифрующей гаммы – это необходимое (но далеко не достаточное) условие для практической стойкости всякого аддитивного поточного шифра.
Важно отметить, что такие свойства как большой период, большая линейная сложность и хорошее статистическое поведение являются необходимыми, но не достаточными условиями, для того чтобы поточный шифр считался криптостойким.
4. Исчерпывающий поиск ключа
Это самый общий тип атаки, который может быть применен к любому поточному шифру. Получив последовательность ключевого потока, произведенную на неизвестном ключе, криптоаналитик просто перебирает все возможные ключи и проверяет, соответствует ли произведенный ключевой поток данной последовательности ключевого потока. Если ключ k имеет длину n бит, то криптоаналитик должен перебрать 2n ключей в худшем случае и 2n–1 – в среднем. Вычислительная сложность атаки обычно обозначается как O(2n) и читается как c Ч 2n, где c – это некоторая небольшая константа. Атаки с вычислительной сложностью большей, чем у исчерпывающего поиска ключа, не рассматриваются.
Временная сложность исчерпывающего поиска ключа может быть значительно снижена путем использования атаки с согласованием памяти и времени.
5. Time-memory-data trade-off атака
Вычислительная сложность атаки исчерпывающим перебором может быть понижена за счет использования большого количества предвычисленных данных, хранящихся в памяти. Такая атака называется time-memory-data trade-off (TMDTO) атакой – атака согласования времени, памяти и данных.
219