
- •Введение
- •1 Предварительные математические сведения
- •1.1 Множества
- •1.2 Операции и отношения
- •1.2.1 Операции над множествами
- •1.2.2 Отношения на множествах
- •1.3.1 Цепочки
- •1.3.2 Операции над цепочками
- •1.4.2 Операции над языком
- •1.5 Алгоритмы
- •1.5.1 Частичные алгоритмы
- •1.5.2 Всюду определенные алгоритмы
- •1.5.3 Рекурсивные алгоритмы
- •1.5.4 Задание алгоритмов
- •1.5.5 Проблемы
- •1.6 Некоторые понятия теории графов
- •1.6.1 Ориентированные графы
- •1.6.2 Ориентированные ациклические графы
- •1.6.3 Деревья
- •1.6.4 Упорядоченные графы
- •2 Введение в компиляцию
- •2.1 Задание языков программирования
- •2.2 Синтаксис и семантика
- •2.3 Процесс компиляции
- •2.4 Лексический анализ
- •2.5 Работа с таблицами
- •2.6 Синтаксический анализ
- •2.7 Генератор кода
- •2.8 Оптимизация кода
- •2.9 Исправление ошибок
- •2.10 Резюме
- •3 Теория языков
- •3.1 Способы определения языков
- •3.2 Грамматики
- •3.3 Грамматики с ограничениями на правила
- •3.4 Распознаватели
- •3.5.1 Определения
- •3.8 Конечные автоматы и регулярные множества
- •3.9.1 Постановка задачи
- •3.10 Контекстно-свободные языки
- •3.10.2 Преобразование КС-грамматик
- •3.10.2.1. Алгоритм проверки пустоты языка
- •3.10.2.2. Алгоритм устранения недостижимых символов
- •3.10.2.3. Алгоритм устранения бесполезных символов
- •3.10.2.5. Алгоритм устранения цепных правил
- •3.10.3 Грамматика без циклов
- •3.10.4 Нормальная форма Хомского
- •3.10.5 Нормальная форма Грейбах
- •3.11 Автоматы с магазинной памятью
- •3.11.1 Основные определения
- •4.1 LL(k)-грамматики
- •4.2.2 Алгоритм поиска направляющих символов
- •4.2.2.1 Множество предшествующих символов
- •4.2.2.2 Множество последующих символов
- •4.2.2.3 Множество направляющих символов
- •4.3 LL(1)-таблица разбора
- •4.3.1 Построение таблицы
- •5 Синтаксический анализ снизу вверх
- •5.1 LR(k)-грамматики
- •5.2 LR(1)-грамматики
- •5.3 LR(1)-таблица разбора
- •5.3.1 Состояния анализатора
- •5.3.2 Построение таблицы
- •5.3.3 LR-конфликты
- •5.3.4 Разбор цепочки по таблице
- •5.4 Сравнение LL- и LR-методов разбора
- •6 Включение действий в синтаксис
- •6.2 Работа с таблицей символов
- •7 Проектирование компиляторов
- •7.1 Число проходов
- •7.2 Таблицы символов
- •7.2.2 Бинарное дерево
- •7.4.1 Стек времени прогона
- •7.4.2 Методы вызова параметров
- •7.4.3 Обстановка выполнения процедур
- •8 Генерация кода
- •8.1 Генерация промежуточного кода
- •8.2 Структура данных для генерации кода
- •8.3.1 Присвоение
- •8.3.2 Условные зависимости
- •8.3.3 Описание идентификаторов
- •8.3.4 Циклы
- •8.3.5 Вход и выход из блока
- •8.3.6 Прикладные реализации
- •8.4 Проблемы, связанные с типами
- •8.5 Время компиляции и время прогона
- •9 Исправление и диагностика ошибок
- •9.1 Типы ошибок
- •9.2 Лексические ошибки
- •9.3 Ошибки в употреблении скобок
- •9.4 Синтаксические ошибки
- •9.4.1 Методы исправления синтаксических ошибок
- •9.4.2 Предупреждения
- •9.4.3 Сообщения о синтаксических ошибках
- •9.5 Контекстно-зависимые ошибки
- •9.6 Ошибки, связанные с употреблением типов
- •9.7 Ошибки, допускаемые во время прогона
- •9.8 Ошибки, связанные с нарушением ограничений
- •Заключение
- •Список литературы
- •Глоссарий

185
7 ПРОЕКТИРОВАНИЕ КОМПИЛЯТОРОВ
7.1 ЧИСЛО ПРОХОДОВ
Разработчики компиляторов находят идею однопроходного компиля-
тора привлекательной, так как не надо заботиться о связях между проходами,
промежуточных языках и т.д. Кроме того, нет трудностей в ассоциировании ошибок программы с исходным тестом. Однако вопрос о количестве прохо-
дов неоднозначен [2]. Прежде всего, надо определить, что мы будем считать проходом.
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Если какая-либо фаза процесса компиляции требует полно-
го прочтения текста, то это обычно называют проходом.
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Проходы бывают прямыми или обратными, т.е. за один проход исход-
ный текст можно считать слева направо или справа налево.
Большинство языков, использующих идею описания переменных до их первого использования (Pascal, C++ и др.) либо использующих принцип умолчания, в принципе могут быть однопроходными. Однако есть ряд осо-
бенностей, которые не позволяют обеспечить компиляцию за один проход.
Особенно ясно это можно продемонстрировать на проблеме компиляции вза-
имно рекурсивных процедур. Допустим, что тело процедуры A содержит вы-
зов процедуры B, а процедура B содержит вызов процедуры A. Если проце-
дура A объявляется первой, то компилятор не будет генерировать код для вы-
зова B внутри A, не зная типов параметров B, и, в случае процедуры, возвра-
щающей результат, тип этого результата может потребоваться для идентифи-
кации обозначения операции. Единственное разумное решение данной про-
блемы – позволить компилятору сделать дополнительный проход перед гене-
рацией кода.