
- •Введение
- •1 Предварительные математические сведения
- •1.1 Множества
- •1.2 Операции и отношения
- •1.2.1 Операции над множествами
- •1.2.2 Отношения на множествах
- •1.3.1 Цепочки
- •1.3.2 Операции над цепочками
- •1.4.2 Операции над языком
- •1.5 Алгоритмы
- •1.5.1 Частичные алгоритмы
- •1.5.2 Всюду определенные алгоритмы
- •1.5.3 Рекурсивные алгоритмы
- •1.5.4 Задание алгоритмов
- •1.5.5 Проблемы
- •1.6 Некоторые понятия теории графов
- •1.6.1 Ориентированные графы
- •1.6.2 Ориентированные ациклические графы
- •1.6.3 Деревья
- •1.6.4 Упорядоченные графы
- •2 Введение в компиляцию
- •2.1 Задание языков программирования
- •2.2 Синтаксис и семантика
- •2.3 Процесс компиляции
- •2.4 Лексический анализ
- •2.5 Работа с таблицами
- •2.6 Синтаксический анализ
- •2.7 Генератор кода
- •2.8 Оптимизация кода
- •2.9 Исправление ошибок
- •2.10 Резюме
- •3 Теория языков
- •3.1 Способы определения языков
- •3.2 Грамматики
- •3.3 Грамматики с ограничениями на правила
- •3.4 Распознаватели
- •3.5.1 Определения
- •3.8 Конечные автоматы и регулярные множества
- •3.9.1 Постановка задачи
- •3.10 Контекстно-свободные языки
- •3.10.2 Преобразование КС-грамматик
- •3.10.2.1. Алгоритм проверки пустоты языка
- •3.10.2.2. Алгоритм устранения недостижимых символов
- •3.10.2.3. Алгоритм устранения бесполезных символов
- •3.10.2.5. Алгоритм устранения цепных правил
- •3.10.3 Грамматика без циклов
- •3.10.4 Нормальная форма Хомского
- •3.10.5 Нормальная форма Грейбах
- •3.11 Автоматы с магазинной памятью
- •3.11.1 Основные определения
- •4.1 LL(k)-грамматики
- •4.2.2 Алгоритм поиска направляющих символов
- •4.2.2.1 Множество предшествующих символов
- •4.2.2.2 Множество последующих символов
- •4.2.2.3 Множество направляющих символов
- •4.3 LL(1)-таблица разбора
- •4.3.1 Построение таблицы
- •5 Синтаксический анализ снизу вверх
- •5.1 LR(k)-грамматики
- •5.2 LR(1)-грамматики
- •5.3 LR(1)-таблица разбора
- •5.3.1 Состояния анализатора
- •5.3.2 Построение таблицы
- •5.3.3 LR-конфликты
- •5.3.4 Разбор цепочки по таблице
- •5.4 Сравнение LL- и LR-методов разбора
- •6 Включение действий в синтаксис
- •6.2 Работа с таблицей символов
- •7 Проектирование компиляторов
- •7.1 Число проходов
- •7.2 Таблицы символов
- •7.2.2 Бинарное дерево
- •7.4.1 Стек времени прогона
- •7.4.2 Методы вызова параметров
- •7.4.3 Обстановка выполнения процедур
- •8 Генерация кода
- •8.1 Генерация промежуточного кода
- •8.2 Структура данных для генерации кода
- •8.3.1 Присвоение
- •8.3.2 Условные зависимости
- •8.3.3 Описание идентификаторов
- •8.3.4 Циклы
- •8.3.5 Вход и выход из блока
- •8.3.6 Прикладные реализации
- •8.4 Проблемы, связанные с типами
- •8.5 Время компиляции и время прогона
- •9 Исправление и диагностика ошибок
- •9.1 Типы ошибок
- •9.2 Лексические ошибки
- •9.3 Ошибки в употреблении скобок
- •9.4 Синтаксические ошибки
- •9.4.1 Методы исправления синтаксических ошибок
- •9.4.2 Предупреждения
- •9.4.3 Сообщения о синтаксических ошибках
- •9.5 Контекстно-зависимые ошибки
- •9.6 Ошибки, связанные с употреблением типов
- •9.7 Ошибки, допускаемые во время прогона
- •9.8 Ошибки, связанные с нарушением ограничений
- •Заключение
- •Список литературы
- •Глоссарий

8
1 ПРЕДВАРИТЕЛЬНЫЕ МАТЕМАТИЧЕСКИЕ СВЕДЕНИЯ
1.1 МНОЖЕСТВА
Будем предполагать, что существуют объекты, называемые атомами
[3]. Это слово обозначает первоначальное понятие, иначе говоря, термин
«атом» остается неопределенным. Что называть атомом, зависит от рассмат-
риваемой области. Часто бывает удобным считать атомами целые числа или буквы некоторого алфавита. Будем также постулировать абстрактное поня-
тие принадлежности. Если a принадлежит A, то пишут a A, A = {a1, a2, …, an}. Отрицание этого утверждения записывается как a A. Полагается, что ес-
ли a – атом, то ему ничто не принадлежит, т.е. x a.
Будем также использовать некоторые примитивные объекты, называе-
мые множествами, которые не являются атомами [3, 5]. Если A – множе-
ство, то его элементы – это есть объекты a (не обязательно атомы), для ко-
торых a A. Каждый элемент множества представляет собой либо атом, либо другое множество. Если A содержит конечное число элементов, то A называ-
ется конечным множеством.
Утверждение #A = n означает, что множество A имеет n элементов.
Символ обозначает пустое множество, т.е. множество, в котором нет эле-
ментов. Заметим, что атом тоже не имеет элементов, но пустое множество не атом и атом не является пустым множеством.
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Один из способов определения множества – определение с помощью предиката. Предикат – это утверждение, состоящее из нескольких переменных и принимающее значение 0 или 1 («ложь» или «истина»). Множество, определяемое с помощью предиката, состоит из тех элементов, для которых предикат истинен.