
- •ГЛАВА 1. ОПРЕДЕЛЕНИЕ И НАЗНАЧЕНИЕ МОДЕЛИРОВАНИЯ
- •1.1 Понятие модели
- •Что значит знать? Вот, друг мой, в чем вопрос. На этот счет у нас не все в порядке.
- •Модели вокруг нас
- •Определение модели
- •Свойства моделей
- •Цели моделирования
- •1.2 Классификация моделей
- •Рисунок 1.1 – Типы моделирования
- •Идеальное моделирование
- •Когнитивные, концептуальные и формальные модели
- •Рисунок 1.2 – Взаимоотношения моделей между собой
- •1.3 Классификация математических моделей
- •1.3.1 Классификация в зависимости от сложности объекта моделирования
- •Рисунок 1.3 – Объекты моделирования
- •Рисунок 1.5 – Классификация по оператору модели
- •1.3.3 Классификация в зависимости от параметров модели
- •Рисунок 1.7 – Классификация по параметрам модели
- •1.3.4 Классификация в зависимости от целей моделирования
- •Рисунок 1.8 – Классификация по цели моделирования
- •1.3.5 Классификация в зависимости от методов исследования
- •Рисунок 1.9 – Классификация по методам исследования
- •ГЛАВА 2. ЭТАПЫ ПОСТРОЕНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
- •Введение
- •Рисунок 2.1 – Этапы построения математической модели
- •2.1 Обследование объекта моделирования
- •Первоначальная формулировка проблемы является самой трудной частью, так как здесь необходимо все время использовать свои мысли, позднее взамен их может использоваться математика.
- •Пример
- •Модель должна позволять:
- •Исходные данные:
- •2.2 Концептуальная постановка задачи моделирования
- •Пример
- •Примем следующие гипотезы:
- •2.3 Математическая постановка задачи моделирования
- •Задача любого вида сводится к математической задаче.
- •Пример
- •А) Векторная форма
- •Б) Координатная форма
- •2.4 Выбор и обоснование выбора метода решения задачи
- •Метод решения хорош, если с самого начала мы можем предвидеть – и далее подтвердить это, – что следуя этому методу, мы достигнем цели.
- •Пример
- •Аналитическое решение задачи о баскетболисте
- •Пример
- •Алгоритм 2.1
- •2.5 Реализация математической модели в виде программы для ЭВМ
- •Компьютеры бесподобны: за несколько минут они могут совершить такую ошибку, которую не в состоянии сделать множество людей за многие месяцы.
- •1) Название задачи
- •2) Описание
- •3) Управление режимами работы программы
- •4) Входные данные
- •5) Выходные данные
- •6) Ошибки
- •7) Тестовые задачи
- •Пример:
- •Спецификация задачи о баскетболисте
- •1) Название задачи
- •Компьютер IBM PC Pentium
- •2) Описание
- •3) Управление режимами работы программы
- •4) Входные данные
- •5) Выходные данные
- •6) Ошибки
- •7) Тестовые примеры
- •2.6 Проверка адекватности модели
- •Хороший теоретик может объяснить почти любые полученные результаты, верные или неверные, и по крайней мере может потерять массу времени на выяснение того, верны они или нет.
- •2.7 Практическое использование построенной модели и анализ результатов моделирования
- •Пример
- •ГЛАВА 3. СТРУКТУРНЫЕ МОДЕЛИ
- •3.1 Что такое структурная модель?
- •Системой является все, что мы хотим различать как систему.
- •Рисунок 3.1 – Структурная схема системы
- •Рисунок 3.5 – Структурная модель вращающегося тела
- •Рисунок 3.6 – Структурная модель упругого тела
- •Рисунок 3.7 – Двухступенчатая веерная структурная схема
- •3.2 Способы построения структурных моделей
- •Рисунок 3.8 – Полная формальная модель деятельности человека
- •Рисунок 3.9 – Формальная модель педагогического процесса в вузе
- •Рисунок 3.11 – Пример вычислительного агрегата
- •ГЛАВА 4. МОДЕЛИРОВАНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ
- •Нет ничего более противного разуму и природе, чем случайность.
- •4.1 Причины появления неопределенностей и их виды
- •Рисунок 4.2 – Причины возникновения неоднозначности
- •Рисунок 4.3 – Формы описания неопределенности
- •4.2 Моделирование в условиях неопределенности, описываемой с позиций теории нечетких множеств
- •Пример
- •Пример вычисления максминного произведения
- •Пусть
- •Пример объединения.
- •Пример пересечения.
- •Пример дополнения.
- •Пример операций над множествами.
- •Пример вычисления индексов ранжирования.
- •Пример
- •4.3 Моделирование в условиях стохастической неопределенности
- •Пример событий
- •Пример 2
- •Решение
- •Пример 4
- •Пример 5
- •Задача о баскетболисте
- •4.4 Моделирование марковских случайных процессов
- •Пример 1
- •Список использованной литературы
ний в рассматриваемой предметной области. С другой стороны, используя формальные преобразования математических соотношений, математик может получить решения, которые очень сложно получить экономисту, пользующемуся своими подходами и методами (обычно – более простыми с точки зрения математики). Поэтому эффективность деятельности рабочей группы в большой степени зависит от способности ее членов поставить себя на место специалиста другого профиля, изучить его точку зрения (т.е. особенности его когнитивной модели) и найти некоторый компромисс, учитывающий все ценное.
Как отмечалось выше, концептуальная модель строится как некоторая идеализированная модель объекта, записанная в терминах конкретных (например, естественнонаучных) дисциплин. Для этого формулируется совокупность гипотез о поведении объекта, его взаимодействии с окружающей средой, изменении внутренних параметров. Как правило, эти гипотезы правдоподобны в том смысле, что для их обоснования могут быть приведены некоторые теоретические доводы и экспериментальные данные, основанные на собранной ранее информации об объекте. В выборе и обосновании принимаемых гипотез в значительной степени проявляется искусство, опыт и накопленные знания членов рабочей группы. На основании принятых гипотез определяется множество параметров, описывающих состояние объекта, а также перечень законов, управляющих изменением и взаимосвязью этих параметров между собой.
Пример
Концептуальная постановка задачи о баскетболисте
Движение баскетбольного мяча может быть описано в соответствии с законами классической механики Ньютона.
53