
- •ГЛАВА 1. ОПРЕДЕЛЕНИЕ И НАЗНАЧЕНИЕ МОДЕЛИРОВАНИЯ
- •1.1 Понятие модели
- •Что значит знать? Вот, друг мой, в чем вопрос. На этот счет у нас не все в порядке.
- •Модели вокруг нас
- •Определение модели
- •Свойства моделей
- •Цели моделирования
- •1.2 Классификация моделей
- •Рисунок 1.1 – Типы моделирования
- •Идеальное моделирование
- •Когнитивные, концептуальные и формальные модели
- •Рисунок 1.2 – Взаимоотношения моделей между собой
- •1.3 Классификация математических моделей
- •1.3.1 Классификация в зависимости от сложности объекта моделирования
- •Рисунок 1.3 – Объекты моделирования
- •Рисунок 1.5 – Классификация по оператору модели
- •1.3.3 Классификация в зависимости от параметров модели
- •Рисунок 1.7 – Классификация по параметрам модели
- •1.3.4 Классификация в зависимости от целей моделирования
- •Рисунок 1.8 – Классификация по цели моделирования
- •1.3.5 Классификация в зависимости от методов исследования
- •Рисунок 1.9 – Классификация по методам исследования
- •ГЛАВА 2. ЭТАПЫ ПОСТРОЕНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
- •Введение
- •Рисунок 2.1 – Этапы построения математической модели
- •2.1 Обследование объекта моделирования
- •Первоначальная формулировка проблемы является самой трудной частью, так как здесь необходимо все время использовать свои мысли, позднее взамен их может использоваться математика.
- •Пример
- •Модель должна позволять:
- •Исходные данные:
- •2.2 Концептуальная постановка задачи моделирования
- •Пример
- •Примем следующие гипотезы:
- •2.3 Математическая постановка задачи моделирования
- •Задача любого вида сводится к математической задаче.
- •Пример
- •А) Векторная форма
- •Б) Координатная форма
- •2.4 Выбор и обоснование выбора метода решения задачи
- •Метод решения хорош, если с самого начала мы можем предвидеть – и далее подтвердить это, – что следуя этому методу, мы достигнем цели.
- •Пример
- •Аналитическое решение задачи о баскетболисте
- •Пример
- •Алгоритм 2.1
- •2.5 Реализация математической модели в виде программы для ЭВМ
- •Компьютеры бесподобны: за несколько минут они могут совершить такую ошибку, которую не в состоянии сделать множество людей за многие месяцы.
- •1) Название задачи
- •2) Описание
- •3) Управление режимами работы программы
- •4) Входные данные
- •5) Выходные данные
- •6) Ошибки
- •7) Тестовые задачи
- •Пример:
- •Спецификация задачи о баскетболисте
- •1) Название задачи
- •Компьютер IBM PC Pentium
- •2) Описание
- •3) Управление режимами работы программы
- •4) Входные данные
- •5) Выходные данные
- •6) Ошибки
- •7) Тестовые примеры
- •2.6 Проверка адекватности модели
- •Хороший теоретик может объяснить почти любые полученные результаты, верные или неверные, и по крайней мере может потерять массу времени на выяснение того, верны они или нет.
- •2.7 Практическое использование построенной модели и анализ результатов моделирования
- •Пример
- •ГЛАВА 3. СТРУКТУРНЫЕ МОДЕЛИ
- •3.1 Что такое структурная модель?
- •Системой является все, что мы хотим различать как систему.
- •Рисунок 3.1 – Структурная схема системы
- •Рисунок 3.5 – Структурная модель вращающегося тела
- •Рисунок 3.6 – Структурная модель упругого тела
- •Рисунок 3.7 – Двухступенчатая веерная структурная схема
- •3.2 Способы построения структурных моделей
- •Рисунок 3.8 – Полная формальная модель деятельности человека
- •Рисунок 3.9 – Формальная модель педагогического процесса в вузе
- •Рисунок 3.11 – Пример вычислительного агрегата
- •ГЛАВА 4. МОДЕЛИРОВАНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ
- •Нет ничего более противного разуму и природе, чем случайность.
- •4.1 Причины появления неопределенностей и их виды
- •Рисунок 4.2 – Причины возникновения неоднозначности
- •Рисунок 4.3 – Формы описания неопределенности
- •4.2 Моделирование в условиях неопределенности, описываемой с позиций теории нечетких множеств
- •Пример
- •Пример вычисления максминного произведения
- •Пусть
- •Пример объединения.
- •Пример пересечения.
- •Пример дополнения.
- •Пример операций над множествами.
- •Пример вычисления индексов ранжирования.
- •Пример
- •4.3 Моделирование в условиях стохастической неопределенности
- •Пример событий
- •Пример 2
- •Решение
- •Пример 4
- •Пример 5
- •Задача о баскетболисте
- •4.4 Моделирование марковских случайных процессов
- •Пример 1
- •Список использованной литературы
на создание всей модели, а с учетом возможного уточнения и переформулировки – и более.
Учитывая огромную важность рассматриваемого этапа, техническое задание следует подвергать внутренней (внутри организации) и внешней экспертизе независимыми экспертами, не участвующими в его разработке. Обязательным условием на этапе разработки технического задания является участие в его обсуждении всех членов рабочей группы.
Пример
Содержательная постановка задачи о баскетболисте
Разработать математическую модель, позволяющую описать полет баскетбольного мяча, брошенного игроком в баскетбольную корзину.
Модель должна позволять:
•вычислять положение мяча в любой момент времени;
•определять точность попадания мяча в корзину после броска при различных начальных параметрах.
Исходные данные:
•масса и радиус мяча;
•начальные координаты, начальная скорость и угол броска мяча;
•координаты центра и радиус корзины.
2.2 Концептуальная постановка задачи моделирования
Наилучшие гипотезы – это простые гипотезы, которые легко подтвердить экспериментально, если они верны, и легко опровергнуть с помощью надлежащим образом подобранных решающих экспериментов или наблюдений, если они неверны.
Н.Бейли
В отличие от содержательной концептуальная постановка задачи моделирования, как правило, формулируется членами ра-
51
бочей группы без привлечения представителей заказчика, на основании разработанного на предыдущем этапе технического задания, с использованием имеющихся знаний об объекте моделирования и требований к будущей модели.
Анализ и совместное обсуждение членами рабочей группы всей имеющейся информации об объекте моделирования позво-
ляет сформировать содержательную модель объекта, являющу-
юся синтезом когнитивных моделей, сложившихся у каждого из членов рабочей группы. На основании содержательной модели разрабатывается уже концептуальная или "естественнонаучная" (физическая, химическая, биологическая и т.д.) постановка задачи моделирования, служащая основой для концептуальной моде-
ли объекта.
Концептуальная постановка задачи моделирования – это сформулированный в терминах конкретных дисциплин (физики, химии, биологии и т.д.) перечень основных вопросов, интересующих заказчика, а также совокупность гипотез относительно свойств и поведения объекта моделирования.
Наибольшие трудности при формулировке концептуальной постановки приходится преодолевать для моделей, находящихся на "стыке" различных дисциплин. Различия традиций, понятий и языков, используемых для описания одних и тех же объектов, являются очень серьезными препятствиями, возникающими при создании "междисциплинарных" моделей. Например, такие понятия как "прибыль" и "баланс" вызывают совершенно разные ассоциации у экономиста и математика-прикладника. Можно сказать, что когнитивные модели, стоящие за этими понятиями, у этих двух специалистов совершенно различны. Если экономист, говоря о прибыли и балансе, связывает с этими понятиями конкретное производство, цену и себестоимость продукции, то для математика данные понятия выглядят более формально, как результаты решения некоторых математических соотношений. При этом практически невозможно научить математика мыслить как экономиста, а экономиста – как математика. И тот, и другой способ восприятия имеет свои достоинства и недостатки. Экономист никогда не сделает ошибок, которые может натворить математик, обращаясь с параметрами модели формально, без должных зна-
52