
- •1. Электрический заряд и его основные свойства. Закон сохранения электрического заряда.
- •2. Электростатика. Точечный заряд. Закон Кулона. Принцип суперпозиции сил. Объемная, поверхностная и линейная плотность заряда.
- •3. Напряженность электрического поля. Силовые линии электростатического поля. Напряженность поля неподвижного точечного заряда. Электростатическое поле. Принцип суперпозиции.
- •4.Поток векторного поля . Теорема Гаусса для поля вектора в вакууме в интегральной форме, ее содержательный смысл.
- •5. Дивергенция поля вектора . Теорема Гаусса для поля вектора в вакууме в дифференциальной форме, ее содержательный смысл.
- •6. Потенциальность электростатического поля. Циркуляция поля вектора . Теорема о циркуляции вектора электростатического поля в интегральной и дифференциальной форме, их содержательный смысл.
- •8. Градиент скалярного поля. Связь между вектором напряженности электростатического поля и потенциалом.
- •9. Электрический диполь. Электрический дипольный момент. Потенциал и напряженность электростатического поля точечного диполя.
- •10. Электрический диполь во внешнем электростатическом поле. Момент сил, действующих на диполь, и потенциальная энергия диполя в однородном электростатическом поле.
- •11.Электростатическое поле в диэлектриках. Связанные и сторонние заряды. Поляризация диэлектриков. Механизмы поляризации. Поляризационные заряды.
- •12. Вектор поляризации . Связь между и в изотропных диэлектриках. Диэлектрическая восприимчивость. Теорема Гаусса для поля вектора в интегральной и дифференциальной форме.
- •13. Вектор электрического смещения . Диэлектрическая проницаемость. Теорема Гаусса для поля вектора в интегральной и дифференциальной форме. Связь между и в изотропных диэлектриках.
- •14. Условия на границе раздела двух диэлектриков для векторов и . Закон преломления силовых линий. Физический смысл диэлектрической проницаемости среды.
- •Нет вопроса 15
- •16. Проводники в электростатическом поле. Электростатическая индукция. Напряженность и потенциал электростатического поля в проводнике. Условия стационарного распределения зарядов в проводнике.
- •18. Электрическая энергия системы точечных зарядов, заряженного проводника и конденсатора. Энергия электрического поля и ее плотность.
- •19.Электрический ток. Вектор плотности и сила электрического тока. Плотность тока в проводнике.
- •20.Уравнение непрерывности (закон сохранения заряда в дифференциальной форме), его содержательный смысл. Условие стационарности электрического тока.
- •21.Сторонние силы. Эдс. Напряжение. Закон Ома в интегральной и дифференциальной форме.
- •22.Закон Джоуля – Ленца в интегральной и дифференциальной форме. Удельная тепловая мощность электрического тока.
- •24.Принцип суперпозиции магнитных полей. Линейный ток. Закон Био–Савара–Лапласа.
- •25. Магнитный поток. Теорема Гаусса для поля вектора в дифференциальной и интегральной форме, их содержательный смысл.
- •27.Сила Лоренца. Движение заряженных частиц в электрическом и магнитном полях. Эффект Холла.
- •28. Сила Ампера. Взаимодействие параллельных токов.
- •30.Магнитное поле в веществе. Намагничение диа- и парамагнетиков. Вектор намагниченности. Теорема о циркуляции поля вектора в интегральной и дифференциальной форме.
- •31.Вектор напряженности магнитного поля. Теорема о циркуляции поля вектора в интегральной и дифференциальной форме. Магнитная восприимчивость и магнитная проницаемость вещества.
- •32. Условия на границе раздела двух магнетиков для векторов и . Закон преломления силовых линий.
- •Нет вопроса 33
- •34. Опыты Фарадея. Явление электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции. Причины возникновения индукционного тока.
- •35. Полный магнитный поток (потокосцепление). Собственный магнитный поток. Индуктивность. Явление самоиндукции. Эдс самоиндукции. Взаимная индукция.
- •36.Энергия магнитного поля и ее плотность.
- •37. Вихревое электрическое поле. Обобщение закона электромагнитной индукции. Ток смещения.
- •Очень важная штука
- •44.Принцип Ферма. Оптическая длина пути. Таутохронность геометрических путей. Законы геометрической оптики.
- •45. Световая волна на границе 2-х диэлектриков
- •46. Интерференция световых волн. Среднее по времени значение интенсивности результирующего света в точке наблюдения. Понятие о когерентности.
- •47.Оптическая разность хода двух когерентных волн и ее связь с разностью фаз этих волн. Условие возникновения интерференционных максимумов и минимумов.
- •48.Зеркало Ллойда. Координаты положений на экране интерференционных максимумов и минимумов. Ширина интерференционной полосы.
- •49. Интерференция света в тонкой плоскопараллельной пластине. Просветление оптики.
- •50. Кольца Ньютона. Радиусы светлых и темных колец в отраженном свете.
- •51. Дифракция света. Принцип Гюйгенса – Френеля. Дифракция Френеля и Фраунгофера.
- •52. Дифракция Френеля на круглом отверстии. Метод зон Френеля.
- •53. Дифракция Фраунгофера на щели. Угловое распределение интенсивности света в дифракционной картине. Условие положений дифракционных минимумов.
- •54. Дифракционная решетка. Угловое распределение интенсивности света в дифракционной картине. Условие положений главных максимумов, главных и промежуточных минимумов.
- •55. Поляризация света. Естественный и поляризованный свет. Закон Малюса.
- •56. Степень поляризации частично поляризованного света. Поляризация света при его отражении и преломлении. Закон Брюстера.
- •Вопросов 57-68 нет ))0) (и задач тоже, но они где-то лежат)
47.Оптическая разность хода двух когерентных волн и ее связь с разностью фаз этих волн. Условие возникновения интерференционных максимумов и минимумов.
При отражении световой волны от оптически более плотной среды ее фаза скачком меняется на противоположную, т.e.на 𝜋.
Разность фаз двух когерентных волн:
где
если общее число отражений 1 и 2 волн от
оптически более плотной среды является
нечетным, 0 - во всех остальных случаях.
Величина
равная
называется оптической
разностью хода.
Условие образования максимума:
если
в некоторой точке пространства две
когерентные волны возбуждают колебания
с одинаковыми фазамиили оптическая
разность хода этих волн равна четному
числу полудлин волн в вакууме, то в этой
точке возникает интерференционный
максимум (
).
Условие образования минимума:
если
в некоторой точке пространства две
когерентные волны возбуждают колебания
с противоположными фазами или оптическая
разность хода этих волн равна нечетному
числу полудлин волн в вакууме, то в
данной точке наблюдается интерференционный
минимум(
).
Световые волны, излучаемые различными источниками(кроме лазеров) не являются когерентными, следовательно, ни от каких двух источников естественного света невозможно получить интерференционную картину, доступную для наблюдения.
48.Зеркало Ллойда. Координаты положений на экране интерференционных максимумов и минимумов. Ширина интерференционной полосы.
Зеркало Ллойда — оптическая система для наблюдения интерференции световых волн. Эксперимент с зеркалом был впервые описан в 1834 году. В эксперименте свет от источника монохроматического излучения отражается от поверхности зеркала под небольшим углом и интерферирует со светом, идущим непосредственно от источника. Таким образом, источниками когерентных волн служат реальный источник света и его мнимое изображение.
Координаты положений на экране интерференционных максимумов:
где
Координаты положений на экране интерференционных минимумов:
где
Ширина интерференционной полосы:
49. Интерференция света в тонкой плоскопараллельной пластине. Просветление оптики.
где
– угол падения,
– угол преломления
Оптическая
разность хода
между когерентными волнами:
Отражение света испытывает наибольшее усиление при условии:
Тогда:
где
Отражение света испытывает наибольшее ослабление при условии:
Тогда:
где
Просветление оптики — это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких слоёв плёнок один поверх другого. Это позволяет увеличить светопропускание оптической системы и повысить контрастность изображения за счёт подавления бликов.
Величины показателей преломления чередуются по величине и подбираются таким образом, чтобы за счёт интерференции уменьшить (или совсем устранить) нежелательное отражение.
50. Кольца Ньютона. Радиусы светлых и темных колец в отраженном свете.
Кольца Ньютона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину.
Светлые кольца будут наблюдаться в тех точках, для которых выполняется условие обратных интерференционных максимумов:
где
Радиус светлых колец в отраженном свете:
где
Радиус тёмных колец в отраженном свете:
где