Добавил:
Developerrnrn Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Райцин / СИДЗ / Курсовая 2 часть

.pdf
Скачиваний:
182
Добавлен:
16.01.2023
Размер:
16.72 Mб
Скачать

2 y y2 dx y2

2xy dy

 

x R cos , dx Rsin d ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

y Rsin , dy R cos d , 0,2

 

2

2Rsin R2 sin2 Rsin d R2 sin2 2R2 cos sin Rcos d

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

R3 sin3 R3 sin2 cos 2R3 cos2 sin

 

 

 

 

 

 

 

2R2 sin2

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

sin

R

sin

d R

 

2

 

 

 

 

 

2

 

 

 

 

 

 

d cos

 

2R

 

 

1 cos 2 d R

 

1 cos

 

 

 

2

 

2

 

3

 

3

 

 

2

 

 

 

 

 

3

 

 

 

 

 

2

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

1 sin 2

2 R3 cos cos

 

2 R2 2 2 R2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

P

 

 

 

 

б) По формуле Грина:

P x, y dx Q x, y dy

dxdy,

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

D

x

 

y

 

 

 

 

 

2 y y2 dx y2

2xy dy 2 y 2 2 y dxdy 2

 

 

dxdy

L

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

x2 y2 R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

R

 

 

 

 

R

2

 

 

 

 

2 Sкруга

 

 

2 R2

2 R2

2 d d 2 2

 

 

 

2 R2.

 

 

2

 

 

 

радиуса R

 

 

 

 

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Вычислите поток векторного поля F xy3i y2 j zk через внешнюю сторону границы области, ограниченной поверхностями x2 z2 2z , y 1 и y 1. 2

9. Найдите циркуляцию векторного поля F (z2 y2 )i (x2 z2 ) j ( y2 x2 )k по контуру, образованному пересечением поверхностей x2 y2 4x и x y z 0 . 0

10. Найти дивергенцию и ротор векторного поля a ; выяснить, является ли данное поле потенциальным или соленоидальным; если да, то найти соответственно его скалярный

или векторный потенциал и сделать проверку потенциала: a z yzi xzj 2xyk .

diva 2xy , rota 0 ; поле потенциальное со скалярным потенциалом U xyz2 C .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вариант 16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Расставить пределы интегрирования двумя способами в двойном интеграле

 

 

 

 

f x, y dxdy в декартовых координатах для области D : y 0, x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y , y

6 x2 .

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 x2

 

 

 

6 x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

6

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx f (x, y)dy dx

 

 

 

 

 

f (x, y)dy dy

 

 

 

f (x, y)dx

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

2

 

 

 

0

 

 

 

 

 

 

0

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Найти массу неоднородной пластины D : y

 

 

x, y x, если поверхностная

 

 

плотность в каждой ее точке

x, y 2 x y.

5160

1160

 

m x, y dxdy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Найти статический момент однородной пластины D :

x2 y2 2y 0, x2 y2

y 0,

x 0, относительно оси Ox , используя полярные координаты.

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 4,

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a cos

 

 

 

 

 

 

 

 

 

M x sin d d

 

a cos 2a cos

 

 

sind

 

 

d

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Найти координаты центра масс однородного тела, занимающего область V :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,0,27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 9 x2 y2 ,

z 36.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Данное тело симметрично относительно оси Oy Ox,Oz , поэтому xc

yc 0,

а

 

 

 

 

 

z x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Переходя к цилиндрическим координатам по формулам:

x cos ,

y sin ,

z z,

имеем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

36

 

 

 

 

 

1

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

zdxdydz z d d dy d

d

zdz

2

1296 81 2 d

 

 

 

2

 

 

 

V

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

9

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

4

 

 

 

 

 

 

 

10368

5184 5184

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1296

 

 

 

 

 

81

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

 

36

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dxdydz

d d dy d d dz 2 36 9

d

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

0

0

 

9

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

3

 

4

2 288 192 192

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 36

 

 

 

9

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

 

 

8

 

 

 

 

 

 

 

2

 

 

 

 

 

2

3

 

2

 

4

 

 

 

dxdydz d d dy d

d dz 2 8

 

 

 

 

 

 

d 8 2 d

 

2

 

 

3

 

 

 

V

 

 

 

 

V

 

 

 

 

 

 

0

 

 

0

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

 

 

 

 

 

 

 

 

 

2 3

 

4

4

 

 

 

 

 

128

 

 

 

 

 

64

 

 

 

 

128

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 4

2

 

 

 

 

 

 

0

2

64

 

 

 

2

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

3

 

3

3

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Следовательно,

yc

zdxdydz / dxdydz

 

5184

27. и центр масс C 0,0,27 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

V

 

 

 

 

 

 

 

192

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Найти момент инерции однородного тела относительно оси

Oy , занимающего

 

область

V :

2y x2

z2 , y 2.

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Найти объем тела, ограниченного поверхностями: z 8 y2 ,

z 0,

x2 y2 4.

28

V : z 8 y2 ; z 0; x2 y2 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V 8 2 sin2 d d d

8 2 sin2 d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

16 4sin2 d 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Вычислить непосредственно и с помощью формулы Грина:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

xy x y dx xy x y dy , где L эллипс

x

 

 

y

 

1.

 

 

 

 

0

 

 

2

 

2

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) Непосредственно:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 y y2 dx y2

2xy dy

 

x R cos , dx Rsin d ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y Rsin , dy R cos d , 0,2

 

 

 

2

2Rsin R2 sin2 Rsin d R2 sin2 2R2 cos sin Rcos d

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2R2 sin2 R3 sin3

R3 sin2 cos 2R3 cos2 sin d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

sin

 

R

 

sin

d R

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

d cos

 

 

2R

 

 

 

 

 

1 cos 2 d R

 

 

1 cos

 

 

 

 

 

2

 

 

2

 

 

 

 

 

3

3

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

2

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2

 

 

 

 

R2

 

 

sin 2

 

 

 

 

 

 

 

2

 

 

 

0

 

 

 

0

 

 

 

 

 

 

 

б) По формуле Грина:

 

 

 

 

 

 

 

2

 

 

 

 

 

3

 

 

cos3

 

 

2

2

 

R

 

cos

 

 

 

0

R

 

2 2 R

.

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

Q

 

P

 

P x, y dx Q x, y dy

 

dxdy,

L

D

x

 

y

 

2 y y2 dx y2 2xy dy 2 y 2 2 y dxdy 2

 

 

dxdy

L

D

 

x2 y2 R2

 

2

R

 

R

2

 

2 Sкруга

2 R2 2 R2 2 d d 2 2

 

2 R2.

2

радиуса R

0

0

 

 

 

 

 

 

 

8. Вычислите поток векторного поля F (x y2 )i xzj k через внешнюю сторону границы области, ограниченной поверхностями x2 y2 4x , z 0 и z 1. 4

9. Вычислить криволинейный интеграл (циркуляцию)

 

 

 

 

 

 

 

 

 

 

 

 

 

3x3 2 y3 z

 

dx

 

3y3 x2 y z2 x

 

dy

 

xyz dz , где C линия пересечения

C

 

 

 

 

 

 

 

 

 

 

 

сферической поверхности

x2 y2 z2 12

с параболоидом z x2 y2 . Линия

проходится по часовой стрелке, если смотреть от начала координат Oz .

Отв: 13,5 .

Решение:

а). Непосредственно:

 

x2

 

z2

x 4cost

 

dx 4sin t

 

 

 

 

 

1

 

2cost 3sin t

 

 

 

 

 

C :

16

 

25

 

y

dy 2sin t 3cos t dt

 

 

10 y 6z 0

 

5sin t, t 0;2

 

 

 

5x

z

 

dz 5cos tdt

I x2 3z dx 5 y 3 dy z 7x dz

 

 

 

C

 

 

 

 

 

 

 

16cos2 t 15sin t 4sin t dt 10cost 15sin t 3 2sin t 3cos t dt

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

5sin t 28cost 5cost dt = 60sin2 t 30sin2 t 30cos2 t 140cos2 t dt

C

30 15 15 70 200 .

0

 

 

2

 

 

 

б). По формуле Стокса:

 

 

 

 

cos

cos

cos

 

 

C

 

 

 

 

 

 

7

3 cos 10cos .

 

 

 

 

 

 

 

 

 

 

x

 

y

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 3z

5y 3

z 7x

 

 

 

I

 

10

dxdz 10 ab 4 5 10 200 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПрXOZ

 

 

 

 

 

 

 

 

10. Найти дивергенцию и ротор векторного поля a ; выяснить, является ли данное поле потенциальным или соленоидальным; если да, то найти соответственно его скалярный

или векторный потенциал и сделать проверку потенциала: a yz2 yzi 2xzj 3xyk . diva 2xz z2 3y2 , rota 0 ; поле потенциальное со скалярным потенциалом

U xy2 z3 C .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вариант 17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Расставить пределы интегрирования двумя способами в двойном интеграле

 

 

f x, y dxdy в декартовых координатах для области D : y x, y2

x 2 .

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

x 2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

x

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

f (x, y)dy dx

 

 

 

 

f (x, y)dy dy

f (x, y)dx

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

2

y2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 2

 

 

 

 

 

 

 

 

 

 

 

x 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Найти массу неоднородной пластины D : y x2

1,

y 1, если поверхностная

 

плотность в каждой ее точке x, y 3x2 2y2 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m x, y dxdy

264

2 35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

3. Найти статический момент однородной пластины D : x2 y2

2y 0, x2 y2

y 0,

x 0, относительно оси Ox , используя полярные координаты.

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 4,

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

2a cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M x sin d d

 

a cos 2a cos

 

 

sind

 

 

 

d

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Найти координаты центра масс однородного тела, занимающего область V :

 

z 3 x2

y2

, x2

y2

9,

z 0. 0,0,9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Данное тело симметрично относительно оси Oy Ox,Oz , поэтому xc

yc 0, а

 

 

 

 

z x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Переходя к цилиндрическим координатам по формулам: x cos ,

y sin ,

z z,

имеем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

 

8

 

 

 

 

 

1

 

2

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zdxdydz z d d dy d

d zdz

 

d 64 4 2 d

 

2

 

V

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

0

0

 

2

 

 

 

 

 

 

 

0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

2

 

 

 

4

 

4

512 256 256

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

64

 

 

4

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

8

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2 3

2

 

 

4

 

 

dxdydz d d dy d

d dz 2

 

8

 

 

 

 

 

 

 

 

 

 

 

d 8 2 d

2

 

 

 

3

 

V

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

0

0

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2 3

 

 

 

 

 

 

 

 

 

128

 

 

 

 

 

 

64

 

 

 

 

128

 

 

 

 

 

 

2 4

 

 

 

 

 

 

 

 

 

 

0

2

64

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

3

 

3

 

3

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Следовательно, yc

zdxdydz / dxdydz

 

 

256 3

 

 

768

 

12

 

6 и центр масс

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

V

 

 

 

 

 

 

 

128

 

 

 

 

 

128

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 0,0,6 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

Найти момент инерции однородного тела относительно оси

Ox , занимающего

область V : x2 y2 z2 , x 2. 16

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

6.

Найти объем тела, ограниченного поверхностями: z2 y,

z2

4 y, x 0,

 

 

 

 

 

 

 

 

 

 

 

 

 

x y 4.

16 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xdy ydx

7.

Вычислить непосредственно и с помощью формулы Грина:

 

 

, где

x2 y2

 

 

 

 

 

 

 

 

L

 

 

 

 

L контур прямоугольника 0 x 2, 1 y 5 .

0

 

 

 

 

 

 

8.

Вычислите поток векторного поля F xzi (x z) j xyk

через внешнюю сторону

границы области, ограниченной поверхностями x2 y2 z 7

и z 3.

104

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в папке СИДЗ