Добавил:
Developerrnrn Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Райцин / СИДЗ / Курсовая 2 часть

.pdf
Скачиваний:
181
Добавлен:
16.01.2023
Размер:
16.72 Mб
Скачать

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

6 2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

3

 

 

 

 

 

 

 

 

 

dxdydz d d dy d

 

d dx 6 d 6 2d

 

 

 

 

 

 

V

 

 

 

 

V

 

 

 

 

 

0

0

0

 

0

 

0

 

 

 

 

 

 

 

 

 

2

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 d

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

2 9

27 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

4

 

 

0

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Следовательно,

xc

xdxdydz / dxdydz

162

6. и центр масс C 6,0,0 .

27

 

 

 

 

 

 

 

 

 

V

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Найти момент инерции однородного тела относительно оси Oz , занимающего

область

V :

 

z 9 x2 y2 , z 0.

243

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Найти объем тела, ограниченного поверхностями: y x2 ,

z y,

z 2 y.

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

7. Вычислить непосредственно и с помощью формулы Грина:

 

 

dx dy

, где L контур

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

x y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

прямоугольника 1 x 3,

0 y 4 .

2

4ln3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Вычислите поток векторного поля F (2x y2 )i ( y2 z) j zk

через внешнюю

 

 

 

 

сторону границы области, ограниченной поверхностями z

 

x2 y2 9 , z 4 и z 0 .

172

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Найдите циркуляцию векторного поля F xi z2 j yk по контуру, заданному

x 2cost 3sin t 1,

 

параметрически: y cost,

3

 

 

z 3sin t.

 

10. Найти дивергенцию и ротор векторного поля a ; выяснить, является ли данное поле потенциальным или соленоидальным; если да, то найти соответственно его скалярный

или векторный потенциал и сделать проверку потенциала: a yi xj. rota 2k , diva 0 ; поле соленоидальное с векторным потенциалом

x2

y2

 

A

 

 

k gradФ .

 

2

 

 

Вариант 26 1. Расставить пределы интегрирования двумя способами в двойном интеграле

f x, y dxdy в декартовых координатах для области D : x

 

 

 

y x .

9 y2 ,

y 0,

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 y2

 

 

 

 

 

0

 

9 x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

f (x, y)dy

 

 

 

dx

 

f (x, y)dy

 

 

 

dy

 

 

 

 

 

 

f (x, y)dx

 

 

dy

 

 

f (x, y)dx

 

3

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 y

2

 

 

 

 

 

 

 

 

 

 

 

 

3 2

 

9 y

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2. Найти массу неоднородной пластины D : x 2,

 

 

y x,

y 3x, если поверхностная

плотность в каждой ее точке

 

 

 

x, y 2x2

 

y2.

 

152 3

 

 

 

 

m x, y dxdy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Найти статический момент однородной пластины D :

x2 y2

2x 0, y x 0, y 0,

относительно оси Ox , используя полярные координаты.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 4,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a cos

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M x

sin d d

 

a cos 2a cos

 

 

sind

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

a cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 0,

4. Найти координаты центра масс однородного тела, занимающего область V :

y 0, z 0, x y z 3.

 

 

 

3

 

 

 

, 3

, 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

4

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Данное тело симметрично относительно оси Oy Ox,Oz , поэтому xc zc 0,

 

 

yc zc 0; xc yc 0 , а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

x x, y, z dxdydz

 

 

 

 

 

 

z x, y, z dxdydz

 

 

yc

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, zc

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. xc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Переходя к цилиндрическим координатам по формулам:

 

x cos ,

y sin ,

y y,

имеем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

4

 

 

 

2

 

 

 

 

 

1 2

 

 

4

 

 

 

 

 

1

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

ydxdydz y d d dy

 

d d

ydy

 

 

 

d

4

 

 

 

 

 

 

d

 

 

 

 

 

 

 

2

 

4

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

 

 

 

 

 

 

 

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 2

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

16

 

 

 

 

16 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

0

 

 

 

 

 

16

 

 

0

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

4

 

 

 

2

 

 

 

 

 

2

 

4

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dxdydz d d dy d d dy d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

d

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

3

 

 

4

 

 

 

 

16

 

 

 

 

 

 

 

 

2

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

0

d

 

 

 

 

 

 

 

 

0

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

3

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 3

 

 

 

 

3

и центр масс C 0, 3

 

,0 .

Следовательно, yc ydxdydz / dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

32

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Найти момент инерции однородного тела относительно оси

 

 

Oz , занимающего

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

область

V :

z 4

 

x2 y

2 ,

 

 

z 2.

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Найти объем тела, ограниченного поверхностями: z 6 x,

z 0,

 

 

 

 

 

 

 

 

 

x2 y 2 2 4, x2 y 1 2 1. 18

7. Вычислить непосредственно и с помощью формулы Грина: y2dx x y 2 dy, где

L

L контур треугольника ABC : A 1;0 , B 1;1 , C 0;1 . 2 3

8. Вычислите поток векторного поля F x2i ( y 2z) j xzk через внешнюю сторону

 

 

 

 

 

 

границы области, ограниченной поверхностями z 2

x2 y2 ,

y 0

и z 0

( y 0 ).

4 3

 

 

 

 

 

Решение:

а). Непосредственно:

 

x2

 

z2

x 4cost

 

dx 4sin t

C :

 

 

 

 

1

 

2cost 3sin t

 

 

 

25

16

 

 

y

dy 2sin t 3cos t dt

 

 

10 y 6z 0

 

5sin t, t 0;2

 

 

 

5x

z

 

dz 5cos tdt

I x2 3z dx 5 y 3 dy z 7x dz

 

 

 

C

 

 

 

 

 

 

 

16cos2 t 15sin t 4sin t dt 10cost 15sin t 3 2sin t 3cos t dt

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

5sin t 28cost 5cost dt = 60sin2 t 30sin2 t 30cos2 t 140cos2 t dt

C

 

 

 

 

 

 

0

 

 

2

30 15 15 70 200 .

 

 

 

б). По формуле Стокса:

 

 

 

 

cos

cos

cos

 

 

 

C

 

 

 

 

 

 

7

3 cos 10cos

.

 

 

 

 

 

 

 

 

 

 

x

 

y

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 3z

5y 3

z 7x

 

 

 

 

I

 

10

dxdz 10 ab 4 5 10 200 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПрXOZ

 

 

 

 

 

 

 

 

 

9. Вычислить криволинейный интеграл (циркуляцию)

xdx zdy ydz , где

 

C

C контур, полученный при пересечении поверхности y2

4 z x с координатными

плоскостями x 0, y 0, z 0 . Линия проходится по часовой стрелке, если смотреть от начала координат. Ответ: 323 .

Решение:

а). Непосредственно:

C : y2 4 z x , x 0, y 0, z 0 .

 

 

y

2

4 z, dz 2 ydy

0

 

 

 

 

 

 

 

 

y

3

 

 

 

 

0

 

 

8

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I1

 

 

 

 

 

 

 

 

 

 

y2 4 dy 2 y2dy

 

 

4 y

 

 

 

 

8

.

 

 

2,0

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

y

 

 

 

 

 

2

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

3

 

 

3

 

 

I

 

x z 4,

 

 

4

xdx 1 x2

4 8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

x 0,4 , y 0,

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 4 y

2

, dx 2 ydy

 

2

 

 

 

 

 

8

 

 

 

 

 

2

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

4

 

 

 

 

 

I3

 

y 0,2 , z 0

 

 

 

 

4 y

 

2 ydy

 

 

 

y

 

 

 

 

 

 

 

 

y

 

 

 

 

16 8

8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

2

 

 

 

 

 

0

4

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I I1 I2 I3 323 8 8 323 .

б). По формуле Стокса:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

cos

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

2cos .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

y

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

z

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4 y2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

y3

 

2

 

 

 

 

8

 

32

 

I 2

 

dydz 2 dy

dz 2 4 y

 

dy 2

 

4 y

 

 

 

 

2

 

8

 

 

 

 

 

.

 

 

 

 

3

 

 

ПрYOZ

0

0

 

0

 

 

 

 

3

 

0

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Найти дивергенцию и ротор векторного поля

a ; выяснить, является ли данное поле

потенциальным или соленоидальным; если да, то найти соответственно его скалярный или векторный потенциал и сделать проверку потенциала:

a x i j k y i k z i j . diva 1,

rota 0 ; поле потенциальное со

 

скалярным потенциалом U

x2

xy xz yz C .

 

 

 

 

 

2

 

 

 

 

 

 

Вариант 27

 

 

1. Расставить пределы интегрирования двумя способами в двойном интеграле

 

f x, y dxdy в декартовых координатах для области D : x 2 y 6 0,

y x,

y 0.

D

 

1

 

 

 

 

 

2

3

 

x

2

y

3

6 2 y

2

dx

 

f (x, y)dy dy f (x, y)dx dy

f (x, y)dx

0

x

0

0

2

0

2. Найти массу неоднородной пластины D : y x, y x2 , если поверхностная плотность

в каждой ее точке

x, y 2x 3y.

1130

 

 

 

m x, y dxdy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Найти статический момент однородной пластины D : x2 y2

2x 0,

y x 0,

x y 0, относительно оси Oy , используя полярные координаты.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 4,

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a cos

 

 

 

 

 

M y

cos d d

a cos 2a cos

 

 

cosd

 

 

 

 

d

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a cos

 

 

 

 

 

 

 

 

4. Найти координаты центра масс однородного тела, занимающего область V :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,0, 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 2 x2 y2 , x2 y2

9,

z 0.

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Данное тело симметрично относительно оси Oy Ox,Oz , поэтому xc

yc

0, а

 

 

 

 

z x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x, y, z dxdydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Переходя к цилиндрическим координатам по формулам: x cos ,

y sin ,

z z,

имеем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

 

8

 

 

 

 

 

1

2

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zdxdydz z d d dy d d zdz

d 64 4 2 d

 

 

2

 

 

V

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

0

0

 

2

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2

 

 

 

 

4

 

 

512 256 256

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

64

 

 

 

 

 

4

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

8

 

 

 

 

 

 

 

 

 

2

 

2 3 2

 

4

 

 

 

dxdydz d d dy d d

dz 2

8

 

 

 

 

 

 

 

 

 

 

 

d 8 2 d

 

2

 

 

 

3

 

V

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

0

0

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2 3

 

 

 

 

 

 

128

 

 

 

 

 

 

64

 

 

 

128

 

 

 

 

 

 

 

 

2 4

 

 

 

 

 

 

 

 

 

 

0

 

2 64

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

3

 

3

3

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Следовательно,

yc

zdxdydz / dxdydz

256 3

 

768

 

12

 

6 и центр масс

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

V

 

 

 

 

 

 

128

 

 

 

 

128

 

 

 

2

 

 

 

 

 

 

C0,0,6 .

5.Найти момент инерции однородного тела относительно оси Oz , занимающего

x2 y2 , z 3. 2

6. Найти объем тела, ограниченного поверхностями: z x2 y2 ,

z 0,

y 2,

y 2x, y 6 x. 39 12

7. Вычислить непосредственно и с помощью формулы Грина:

 

dx dy

, где L квад-

x y

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

рат ABCD : A 1;0 , B 0;1 , C 1;0 , D 0; 1 .

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Вычислите поток векторного поля F

yxi

z yj

 

xzk

через внешнюю сторону

 

 

 

 

 

 

 

x 1,

y 0 , z 1 и z 0 .

167

границы области, ограниченной поверхностями y x ,

 

 

126

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Найдите циркуляцию векторного поля F 2xi 2zj yk по ломаной ABOCDA , где

O (0, 0, 0) , A (1, 0, 0) , B (1, 2, 0) , C (0, 2, 3) , D (0, 0, 3) — вершины прямоугольного

параллелепипеда. При вычислении по теореме Стокса в качестве поверхности, опирающейся на контур, выберите часть поверхности этого параллелепипеда. 3

10. Найти дивергенцию и ротор векторного поля a ; выяснить, является ли данное поле потенциальным или соленоидальным; если да, то найти соответственно его скалярный

или векторный потенциал и сделать проверку потенциала: a zj. rota i , diva 0 ; поле соленоидальное с векторным потенциалом

A xz k gradФ .

Соседние файлы в папке СИДЗ