Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
109
Добавлен:
10.02.2015
Размер:
2.03 Mб
Скачать

Метод хорд

Линия считается заданной на чертеже, если известен закон нахождения каждой ее точки. Для задания линии удобно использовать ее определитель. Определитель линии - это минимальная информация, необходимая и достаточная для однозначного построения на эпюре любой точки кривой.

Построение на эпюре любой точки кривой позволит однозначно решить вопрос о характере кривой линии (плоская или пространственная). Если на заданной кривой взять произвольные четыре точки и через них провести хорды (секущие), то возможны два варианта:

1. Если хорды пересекаются (графически это видно на рис. 1-47, когда К1, К2- точки пересечения проекций хорд лежат на одной линии связи), то через пересекающиеся прямые можно провести плоскость, а это значит, что они образуют плоскость, в которой лежит заданная кривая. Значит, кривая линия - плоская.

Плоская кривая линия

Рис. 1-47

2. Хорды не пересекаются, а скрещиваются (графически это видно на рис. 1-48, когда К1, К2- точки пересечения проекций хорд не лежат на одной линии связи), значит кривая линия - пространственная.

Пространственная кривая линия

Рис. 1-48

Касательная, нормаль к кривой

Как построить касательную к кривой?

Для построения используем прямые, называемые секущими.

Прямая, пересекающая кривую линию в одной, двух и более точках, называется секущей (АВ).

Чтобы через точку Апровести касательнуюtк кривойm, в окрестности точкиА (недалеко) выбирают точкуВи проводят секущуюАВ. Приближая точкуВк точкеАв пределе получают касательнуюtв данной точке.

В А АВ t

Рис. 1-49

Касательную (tв точкеА) можно рассматривать как предельное положение секущей, которое занимает последняя при сближении точек пересеченияА иВсекущейАВдо слияния их в одну точку.

n- нормаль кривой линии в данной точке,n t. Сколько их можно провести? К пространственной кривой можно провестиn , т.е. к касательной можно построить плоскость, нормальную к ней. Если кривая - плоская, то к касательной можно провести только одну нормаль.

Рассмотренная точка А, у которой только одна касательная и одна нормаль , называется обыкновенной точкой кривой. Если вся кривая состоит из обыкновенных точек, то она называется регулярной (гладкой, плавной).

У регулярной плоской кривой (рис. 1-50) в каждой точке А, В, С, D, Ек касательной можно провести только одну нормаль, поэтому все точки являются обыкновенными(монотонными). Характеристикой плавной кривой может быть и угол наклона касательных относительно осиХ, который в данном случае меняется плавно.

Рис. 1-50

Особые точки кривых линий

Точку кривой называют особой (нерегулярной), если положение или направление касательной в этой точке определено неоднозначно. К особым (нерегулярным) относятся:

Точки узловые (самопересечения)

Точки возврата первого рода

Точки возврата второго рода (клюв)

Точки самосоприкосновения

Точки угловые (точки излома)

Свойства проекций кривых линий

Свойства кривых линий и их проекций позволяют наглядно демонстрировать физические, химические, электрические процессы. В геометрии кривые линии - это линии пересечения поверхностей.

Рис. 1-52

1. Проекцией кривой линии является кривая линия (в общем случае).

2. Касательная к кривой проецируется в касательную к ее проекции.

3. Несобственная точка кривой проецируется в несобственную точку ее проекции.

4. Порядок кривой (только для алгебраических кривых) в проекциях не изменяется.

5. Число точек пересечения кривой сохраняется при проецировании.