Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekulyarnaya_biotekhnologia_Glik_B__Pasternak_Dzh

.pdf
Скачиваний:
85
Добавлен:
17.12.2022
Размер:
12.13 Mб
Скачать

Генная инженерия растений: методология

381

Таблица 17.3, Трансгенные растения, полученные

бомбардировкой

различных

растительных

клеток

микрочастицами1)

 

 

 

Растение(я)

Источник клеток

 

 

Кукуруза

Суспензия

зародышевых

клеток,

 

незрелые зиготические зародыши

Рис

Незрелые

зиготические

зародыши,

 

зародышевый каллус

 

 

Ячмень

Суспензии

клеток,

незрелые

 

зиготические зародыши

 

 

Пшеница

Незрелые зиготические зародыши

Дернообразуюшие

Зародышевый каллус

 

 

злаки

 

 

 

 

Рожь

Меристема

 

 

 

Сорго

Незрелые зиготические зародыши

Жемчужное просо

Незрелые зиготические зародыши

Орхидные

Πpотокормы

 

 

Банан

Суспензия зародышевых клеток

Тополь

Каллус

 

 

 

Ель европейская

и Соматические зародыши

 

 

канадская

 

 

 

 

Горох

Зиготические зародыши

 

 

Огурец

Зародышевый каллус

 

 

Батат

Каллус

 

 

 

Клюква

Полученные in vitro части стебля

Пион

Пыльца

 

 

 

Люцерна

Зародышевый каллус

 

 

Бобы

Зиготические зародыши

 

 

Хлопок

Зиготические зародыши

 

 

Виноград

Суспензии зародышевых клеток

Земляной орех

Зародышевый каллус

 

 

Табак

Пыльца

 

 

 

1)Из работы Southgate ét al., Biotechnol. Adv., 13,631-651, 1995.

спомощью этого метода были транспортированы гены в хлоропласты и митохондрии. На поверхность микрочастиц можно осадить плазмидную ДНК, растворенную в буфере. Это позволяет повысить частоту трансформации путем увеличения количества плазмидной ДНК; однако следует иметь в виду, что слишком большие ее количества могут оказаться губительными для клетки,

В трансформированных таким способом клетках, идентифицируемых по экспрессии маркерного гена, введенная ДНК зачастую экспрессируется лишь кратковременно. Пока чужеродная ДНК не встроится в геном растения, она с большой вероятностью утрачивается при делении трансформированных клеток.

Как интеграция, так и экспрессия чужеродных генов может зависеть от конфигурации вектора, используемого для их введения. Например, частота трансформации повышается, если используется линейная, а не кольцевая ДНК, Кроме того, при бомбардировке микрочастицами высокомолекулярные плазмиды (МО т, п. н.) могут фрагментироваться, поэтому уровень экспрессии чужеродных генов окажется ниже, чем в случае плазмид меньшего размера.

Применение репортерных генов при трансформации клеток растений

Для идентификации трансформированных клеток необходимо уметь обнаруживать чужеродную ДНК, интегрировавшую в геномную ДНК растения. Более того, при исследовании сигналов регуляции транскрипции и их функций в специфических растительных тканях (листьях, корнях или цветках) зачастую важно уметь количественно оценивать уровень экспрессии гена, кодирующего легко идентифицируемый продукт. Все это требует применения репортер-ных генов, которые позволяют либо проводить отбор трансформированных клеток, либо оценивать активность кодируемого ими фермента. Было протестировано несколько разных генов, которые можно использовать как доминантные селективные маркеры, и генов, чей белковый продукт можно обнаружить с помощью специфических методов (табл. 17.4). Поскольку многие из репортерных генов имеют бактериальное происхождение, они были снабжены регуляторными последовательностями, обеспечивающими их экспрессию в растительных клетках. Проводя отбор по доминантному маркеру, можно получить культуру, содержащую только трансформированные клетки. Так, в присутствии канамицина выживают только клетки растений, синтезирующих активную неомицинфосфотрансферазу.

Выбор того или иного репортерного гена диктуется характером конкретного эксперимента. Если экспрессия гена мешает нормальному росту растения, то его нельзя использовать как репортерный. Кроме того, по мнению экспертов-биотехнологов, присутствие некоторых генов и их продуктов может приводить к

382

ГЛАВА 17

 

 

 

Таблица 17.4. Системы репортерных и селективных маркерных генов растительных клеток1)

 

 

 

 

 

 

 

Фермент

Использование в качестве

Использование

в

качестве

 

селективного маркёрного гена

репортерного гена

 

 

 

 

 

 

 

загрязнению коммерческого продукта. В связи с этим лучше не вводить гены устойчивости к антибиотикам в сельскохозяйственные растения.

Некоторые продукты репортерных генов (например, ß-D-глюкуронидазу, а также люциферазу, синтезируемую бактериями и светляками) можно обнаружить в интактных растительных тканях, В системах трансформации чаще всего используется ген ß-D- глюкуронидазы E. coli (GUS-ген), Он кодирует стабильный фермент, обычно отсутствующий в растениях, который катализирует расщепление ß-D-глюкуронидов. Его активность в трансформированных растительных тканях можно обнаружить по появлению синей окраски в результате гидролиза неокрашенного субстрата, 5-бром-4-хлор-3-индолил- ß-D-глюкуроновой кислоты. Альтернативный, более чувствительный метод количественной оценки активности GUS-генов в растительных экстрактах основан на определении интенсивности флуоресценции продукта гидролиза 4-метилумбеллиферил-ß-D- глюкуронида.

Эксперименты по экспрессии чужеродных генов в растениях

После того как методика трансформации растений была полностью отработана, исследователи стали пытаться вводить различные растительные и бактериальные гены в клетки самых разных растений. Трансформированные растения проверяли на способность к синтезу чужеродного белка, проводили физиологические исследования, чтобы определить, как присутствие этого белка сказывается на всем растении. Во многих ранних экспериментах использовали промоторы, контролирующие конститутивную экспрессию в ряде растительных клеток. Не так давно были выделены и охарактеризованы растительные промоторы, контролирующие экспрессию чужеродных белков в специфических клетках на определенных стадиях роста и развития растения. Например, вместо сильного конститутивного 35S-промотора вируса мозаики цветной капусты, функционирующего во всех растительных тканях в течение всей жизни растения, ис-

Генная инженерия растений: методология

383

Регенерация жизнеспособных фертильных растений, синтезирующих октопинсинтазу, из корончатого галла табака после делеции генов, контролирующих образование опухоли

H, De Grève, J. Leemans, J. P, Hernalsteens, L. Thia -Tonng, M. De Beuckeleer, L Willmitzer, L, Otten, M, Van Montagu, J. Schell NatureW: 752-755, 1982

Для получения трансгенных

росту

растения.

Поэтому

Ti-плазмида, включившись в

растений

 

 

необходима

прежде чем использовать Ti-

хромосомную

 

ДНК

обычным

эффективная

векторная

система.

плазмиду в качестве вектора для

способом, леренесети свою Т-

Первые попытки

создания

таких

трансформации

растений,

 

ДНК, которая теперь не несет

систем

основывались

на

необходимо

предотвратить

генов

корончатого

 

галла.

использовании

Ti-плазмиды

образование

опухоли.

Изучая

Следующим логическим шагом в

почвенной

 

бактерии

A.

мРНК,

транскрибируемые

с

развитии

этой

системы

стало

tumefaciens,

поскольку

после

интактных

и модифицированных

клонирование

 

чужеродного

инфицирования

 

 

 

Т-ДНК, Шелл и др. показали, что

маркерного

гена

и

гена,

чувствительных

двудольных

гены, ответственные за развитие

интересующего

 

исследователя,

в

растений часть Ti-плазмиды (Т-

корончатого галла, локализованы

Т-ДНК, чтобы их можно было

ДНК)

 

 

встраивается

в Т-ДНК. Это означало, что можно

транспортировать в хромосомную

непосредственно

в хромосомную

удалить из Т-ДНК эти гены и

ДНК растения-хозяина. Векторная

ДНК клетки растения-реципиента.

ввести

ее

с

помощью

система на основе Ti-плазмид

Однако

при

инфицировании

гомологичной рекомбинации в Ti-

нашла широкое

применение

во

растений

 

Ti-плазмидой

на

плазмиду, а последнюю — в

всем мире. Ее используют для

трансформированных

растениях

растительные клетки.

 

 

создания трансгенных растений в

образуется

корончатый

галл —

 

 

 

 

 

тысячах лабораторий.

 

 

 

опухоль,

 

препятствующая

 

 

 

 

 

 

 

 

 

 

 

 

нормальному

пользовали промотор гена малой субъединицы фотосинтетического фермента рибулозобисфосфат-карбоксилазы, работающего только в фотосинтезирующих тканях, например в листьях. Аналогично для контроля экспрессии некоторых чужеродных генов использовали растительные промоторы, функционирующие только в специфических тканях или только при неблагоприятных условиях.

Подавляющее большинство генов растений локализованы в ядерной ДНК, однако хлоропласты и митохондрии тоже содержат гены, кодирующие ряд важных и уникальных функций. При этом не все белки, присутствующие в этих органеллах, закодированы в их ДНК, Некоторые из них кодируются ядерной ДНК, синтезируются в цитоплазме, а затем с помощью специального механизма импортируются в соответствующую органеллу. Есть два способа введения специфического чужеродного белка в митохондрии или хлоропласты. Один способ — это слияние гена, кодирующего чужеродный белок, и последовательности сигнального пептида, направляющего белки в ор-ганеллы. Такая конструкция может быть встроена в хромосомную ДНК, и рекомбинантный белок будет импортироваться в соответствующую органеллу. Второй способ предполагает встраивание гена, кодирующего чужеродный белок, непосредственно в хлоропластную или митохондриальную ДНК.

Выделение различных промоторов и их использование

Для выделения растительных промоторов из некоторых видов растений использовали специализированные так называемые «промотор-направленные» векторы и систему трансформации на основе Ti-плазмид Agrobacterium. Суть подхода состоит в следующем. Репортерный ген без промотора встраивают сразу за правой фланкирующей последовательностью вектора на основе Ti-плазмиды, и после переноса Т-ДНК в хромосому растения он оказывается в окружении растительной ДНК. Если Т-ДНК встроится в промоторный участок функционального гена, то произойдет транскрипция репортерного гена. Для идентификации растительных промоторов в качестве репортерного гена можно использовать ген

384

ГЛАВА 17

неомицинфосфотрансферазы (npt). При этом экспрессию данного гена можно проконтролировать отбором канамицинустойчивых трансформантов. Однако таким способом трудно идентифицировать промоторы, функционирующие лишь на определенной стадии развития растения или индуцируемые специфическим фактором окружающей среды. Чтобы быть уверенным в отборе именно трансформированных клеток, в Т-ДНК следом за репортерным геном без промотора встраивают ген устойчивости к гигромицину, находящийся под контролем конститутивного промотора. Сначала отбирают гигромицинустойчивые клетки, а затем проверяют ферментативную активность трансформантов в условиях, обеспечивающих экспрессию репортерного гена. В результате обнаруживается, что от 5 до 30% трансформированных растительных клеток несут репортерный ген, находящийся под контролем активного промотора.

35S-промотоp вируса мозаики цветной капусты часто используют в растительных системах как сильный промотор, хотя уровень экспрессии контролируемого им гена, кодирующего чужеродный белок, часто оказывается ниже, чем хотелось бы. Чтобы решить эту проблему и найти наиболее эффективный промотор, необходимо протестировать в растениях различные конструкции «промотор—ген». Кроме промотора, экспрессию чужеродных генов могут усиливать некоторые другие элементы, в частности эн-хансерные последовательности, расположенные на расстоянии от одной до нескольких сотен нуклеотидов до промотора, интроны, стабилизирующие мРНК, и сигналы терминации транскрипции.

Были протестированы ДНК-конструкции, содержащие все или некоторые из следующих элементов: 35S-промотор; сигнал терминации транскрипции гена нопалинсинтазы; от одного до семи тандемных повторов энхансерных элементов; так называемая Ω- последовательность, которая предположительно усиливает экспрессию гена на уровне трансляции. Наиболее эффективная конструкция содержала семь энхансерных элементов, при этом уровень экспрессии чужеродного гена в трансгенных растениях табака и риса был намного выше, чем в случае одного 35S-промотора (табл. 17.5). Протестированные промоторные конструкции контролировали экспрессию в трансгенных растениях широкого круга чужеродных генов. Такое разнообразие, вероятно, объясняется тем, что Т-ДНК встраивалась в разные сайты в геноме растения. Используя этот подход, можно создавать сильные тканеспецифичные промоторы, регулируемые в процессе развития,

Введение чужеродных генов в хлоропластную ДНК

У большинства высших растений в каждой клетке листа присутствует примерно 100 хлоропла-стов и каждый хлоропласт содержит примерно 100 копий хлоропластной ДНК. Для стабильной генетической трансформации хлоропластов с целью изменения их функциональных характеристик необходимо вводить чужеродные гены в хлоропластную, а не в хромосомную ДНК. длина которой примерно в l04—105 раз больше. Кроме того, необходимо, чтобы чужеродные гены присутствовали во всех из примерно 104 молекул хлоропластнои ДНК, содержащихся в одной клетке.

Таблица 17.5. Тестирование промоторных конструкций в трансгенных растениях 1), 2)

1)Из работы Mitsuhara el al, Plant Cell Physiol. 37:49-59, 19%.

2)В качестве репортерного гена использовали ген ß-глюкуронидазы Е. соli. Ферментативную активность нормировали по среднему значению для растения, когда ген находился под контролем 35S -промотора. Фактические величины, полученные при тестировании на табаке, примерно в 30 раз превышают те, которые получены на рисе. Сложный промотор включал 35S-промотоp, сигнал терминации транскрипции гена нопалинсинтазы, семь тандемных повторов энхансерных элементов и Ω-nocлeдовательность ДНК вируса табачной мозаики. Средний уровень экспресии генов — это среднее значение, полученное по данным для нескольких трансгенньгх растений, а максимальный уровень — это наибольшее значение, наблюдавшееся на каком-либо растении с данным промотором.

Генная инженерия растений: методология

385

Рис. 17.7. Плазмидные векторы, используемые для введения тандемных генов в хлоропластную ДНК. Spcr — ген устойчивости к спектиномицину.

Вначале чужеродные гены вводили в ДНК хлоролластов в составе плазмидного вектора, несущего неселективную чужеродную ДНК и селективный маркер, например ген устойчивости к антибиотику, фланкированные специфическими последовательностями хлоропластной ДНК (рис. 17.7). Такая стратегия была весьма эффективной, однако нередко селективный маркер мешал экспрессии фланкирующих хлоропластных генов. Чтобы решить эту проблему, разработали стратегию, в которой селективный маркер и чужеродный ген не были физически связаны друг с другом. Для этого растения табака трансформировали смесью одинаковых количеств двух разных плазмид: одна содержала селективный маркер (ген устойчивости к спектиномицину), фланкированный ДНК из одного участка хлоропластной ДНК, а вторая — чужеродный ген (ген устойчивости к канамицину), фланкированный последовательностями из другого участка

хлоропластной ДНК (рис. 17.8). Оба гена имели прокариотические сигналы транскрипции, что обеспечивало их транскрипцию в хлоро-пластах, но не в ядре. Последовательности хлоропластной ДНК в плазмиде были организованы таким образом, что рекомбинация или встраивание в геном хлоропластов не приводила к нарушению работы какого-либо хлоропластного гена. Плазмиды вводили методом бомбардировки микрочастицами, а затем отбирали трансформированные растения табака на среде со спектиномицином. Хлоропласты из отобранных трансформантов проверяли на наличие продукта, детерминируемого геном устойчивости к канамицину (неселективным чужеродным геном). Удивительно, что примерно 30% спектиномицинустойчивых трансформантов экспрессировали также ген устойчивости к канамицину. что указывает на применимость котрансформации для введения чужеродных генов в хлоропластную ДНК.

Рис. 17.8. Плазмидные векторы, используемые для встраивания в хлоропластную ДНК двух генов — селективного и неселективного, Spcr - ген устойчивости к спектиномицину.

386

ГЛАВА 17

Рис. 17.9. Схематическое представление Т-ДНК, входящей в состав вектора. После интеграции Т-ДНК в хромосомную ДНК растения транспозаза может вырезать селективный маркерный ген и встроить его в другой хромосомный сайт. Обозначения: Л и Π — левая и правая фланкируюшие последовательности, Ds мобильный элемент. Промоторы и сигналы терминации транскрипции гена транспозазы, гена, интересующего исследователя, и селективного маркерного гена не показаны.

Получение трансгенных растений, не содержащих маркерных генов

Обычно при введении чужеродного гена в растение одновременно вводится и селективный маркерный ген. Хотя до сих пор не было никаких указаний на то, что какойлибо из этих генов оказывает неблагоприятное воздействие на человека, животных или окружающую среду, последствия, к которым в принципе может привести включение в растения селективных маркерных генов, вызвали беспокойство общественности. Например, продукты некоторых маркерных генов могут оказаться аллергенами или токсичными веществами, а гены устойчивости к антибиотикам могут попасть в патогенные почвенные микроорганизмы. Кроме того, присутствие селективных маркеров технически затрудняет трансформацию трансгенных растений дополнительными генами, поскольку один селективный маркер не может использоваться дважды. Чтобы успокоить общественность, были разработаны методы получения трансгенных растений без каких-либо маркерных генов.

Один из экспериментальных подходов к получению безмаркерных трансгенных растений включает котрансформацию растений двумя разными ДНК, одна из которых несет маркерный ген, а другая — интересующий исследователя чужеродный ген. В этом случае от 30 до 80% растений содержат оба гена, которые, однако, интегрированы в разные сайты хромосомной ДНК. После отбора трансформантов маркерный ген можно удалить из трансгенного растения с помощью обычного скрещивания.

В рамках другого подхода селективный маркерный ген встраивают между растительными мобильными элементами (Ds-элементами) и такую конструкцию вводят в Т- ДНК вместе с геном транспозазы, которая вырезает участок

ДНК между Ds-элементами и перемещает его в другой хромосомный сайт (рис. 17.9). В процессе встраивания Т-ДНК в ДНК растения-хозяина в 90% случаев селективный маркер, находящийся между двумя Ds-элементами, оказывается в другом сайте хромосомной ДНК, при этом с вероятностью 50% этот сайт находится далеко от исходного. Таким образом, селективный маркерный ген может использоваться для идентификации трансформированных растений, а затем удаляться при скрещивании.

ЗАКЛЮЧЕНИЕ

Спомощью генной инженерии можно вводить чужеродные гены в растительные клетки

вкультуре с последующей регенерацией целых фертильных растений из отобранных трансформированных клеток. Естественным путем трансформация растений осуществляется с помощью почвенных бактерий Agrobacterium tumefaciens. При поражении растения в нем начинает синтезироваться специфическое вещество. В ответ на этот химический сигнал A. tumefaciens прикрепляется к мембране растительной клетки, после чего происходит перенос части (Т-ДНК) бактериальной плазмиды (Ti-плазмиды) в ядро растительной клетки. Т-ДНК встраивается в растительный геном и экспрессируется. Т-ДНК содержит гены, кодирующие ферменты синтеза фитогормонов, которые вызывают увеличение размеров растительных клеток и их пролиферацию. Кроме того, растительные клетки начинают синтезировать опин, кодируемый Т-ДНК, который может использоваться только A. tumefaciens. Таким образом, в процессе эволюции сформировался механизм превращения растительной клетки в «фабрику» по производству вещества — источника углерода и азота (опина) исключительно для нужд A, tumefaciens.

Генная инженерия растений: методология

387

Чтобы использовать природную способность A. tumefaciens проникать в растительные клетки для доставки в них клонированных генов, были созданы модифицированные Tiплазмиды. Из Т-ДНК удаляли гены фитогормонов и гены метаболизма опина и встраивали такую измененную Т-ДНК в плазмиду, способную стабильно существовать в Е. соli. Встроенный в Т-ДНК ген-мишень попадал вместе с ней в ядро растительной клеткиреципиента. В случае бинарной системы челночный вектор с клонированным в Т-ДНК геном вводят в штамм A. tumefaciens, несущий модифицированную плазмиду с генами, необходимыми для переноса Т-ДНК в клетку растения (vir-генами). Кроме того, разработана коинтегративная система, которая предполагает введение челночного вектора в A. tumefaciens, где он рекомбинирует с неонкогенной Ti-плазми-дой, несущей vir-гены, с образованием одной плазмиды, в которой есть и функционирующие vir-гены, и Т-ДНК с клонированным геном. Участок Т-ДНК A. tumefaciens использовали для введения генов в различные растения. К сожалению, эта система применима не для всех видов растений. Эффективным методом доставки ДНК в различные растительные клетки является также бомбардировка микрочастицами (биолистика).

Для обеспечения экспрессии чужеродных генов, введенных в растительные клетки, использовали растительные промоторы. Различные промоторы, функционирующие только в определенных растительных тканях или на определенной стадии развития растения, идентифицировали по экспрессии репортерного гена без промотора после его интеграции в хромосомную ДНК растения. Были разработаны методы встраивания чужеродных генов непосредственно в хлоропластную или митохондриальную ДНК так, чтобы кодируемый белок синтезировался прямо в этих органеллах. И наконец, для того чтобы успокоить общественность, были разработаны методы удаления маркерных генов из трансгенных растений.

ЛИТЕРАТУРА

An G., V. Kim. 1993. Techniques for isolating and characterizing plant transcription promoters, enhancers, and terminators, p. 155—166. in B. R.

Glick, J. E, Thompson (ed.), Methods in Plant Molecular Biology and Biotechnology, CRC Press, Boca Raton, Fla.

Carrer H., P. Maliga. 1995. Targeted insertion of foreign genes into the tobacco ptaslid genome without physical linkage to the selectable marker gene. Bio/Technology 13: 791-794.

Christou P. 1992. Genetic transformation of crop plants using microprojectile bombardment. Plant /2:275-281.

Dale E. C., D. Ow. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sei. USa 88: 10558-10562.

Goldsbrough A. P., C. N. LastreUa, J. 1. Voder. 1993. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Bio/Technology 11:12861292.

Grtiber M. Y., W. L. Crosby. 1993. Vectors for plant transformation, p. 89-119, In B. R. Glick, J. E. Thompson (ed.). Methods in Plant Molecular Biology and Biotechnology. CRC Press, Boca Raton, Fla.

Halfter U., P. С. Morris, L· Willmitzer. 1992. Gene targeting in Arabidopsis thaliana. Mol. Gen. Genet. 231: 186-193.

Istiida Y., EL Saito, S. Otita, Y. Hiei, T. Kimari, T. Kumashiro. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol.

14:745-750.

Jefferson R. A., T. A. Kavanagh, M. W. Bcvan. 1987. GUS fusions: ß-glucuronidasc as a

sensitive ami versatile gene fusion marker in higher plants. EMBOJ, 6:3901-3907.

Klein T. M., E. D. Wolf, R. Wu, J. C. Santord. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature (London) 327: 70-73.

Kriiger-Lebus S., I. Potrykus. 1987. A simple and efficient method for direct gene transfer to

Petunia hybridia without electroporation. Plant Mol. Biol. Rep. 5: 289-294.

Miki B. L-, P. F. Fobcrt, P. J. Charest, V. N. Iyer. 1993. Procedures for introducing foreign DNA into plants, p. 67-88. In B. R. Glick, J. E. Thompson (ed.), Methods in Plant Molecular Biology and Biotechnology. CRC Press, Boca Raton, Fla.

388

ГЛАВА 17

Mitsuhara I,, M, Ugaki, H. Hirochika, M. Ohshima, T. Murakami, Y. Gotoh, Y. Katayosc, S. Nakamura, R. Honkura, S. Nfehimiya, K. Lcno, A. Mochizuki, H. Tanimoto, H. Tsugawa, Y. Otsuki, Y. Ohashi. 1996. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physio!. 37:49-59.

Ow D. W., K. V. Wood, M. DeLuca, J. R. de Wet, D. R. Helinski, S. H. Howell. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856-859.

Paszkowski J., M. Baur, A. Bogucki, I, Potrykus, 1988. Gene targeting in plants. EMBO J.

7: 4021-4026.

Pausl K. P. 1995. Plant biotechnology for crop improvement. B'totechnol. Adv. 13: 673— 693.

Potrykus 1. 1990. Gene transfer to cereals: an assessment. Bio/Technology 8: 535-542. Potrykus 1. 1991. Gene transfer to plants: assessment of published approaches and results.

Anna. Rev. riant Physiol. 41: 205-225.

Southgate E. M., M. R. Davey, J. B. Power, R. Marchant 1995. Factors affecting the genetic engineering of plants by microprojectile bombardment. Riotectinoi. Adv. 13: 631—651.

Vain P., J. de Buyser, V. Bui Trang, R. Haicour, Y. Henry. 1995. Foreign delivery into monocotyledonous species, fiiotechnol. Adv. 13:653—671.

Waiden R., J. Shell. 1990. Techniques in plant molecular biology—progress and problems.

Ear. J. Biochem. 192: 563-576.

Waiden R., R. Wingender. 1995. Gene-transfer and plant-rege ne ration techniques.

Trends Kotechnol. 13:324-331.

Voder J. 1., A. P. Goldsbrough. 1994. Transformation system for generating marker-free transgenic

plants. Bio/Technology 12: 263-267. Zambryski P. 1988. Basic processes underlying

Agrobacterium-meàtateà DNA transfer to plant

cells. Antw. Rev. Genet, 22: 1-30. Zambryski P., J. Tempe, J. Schell. 1989. Transfer and function of T-DNA genes from

Agrobacterium Ti and Ri plasmids in plants. Cell

56: 193-201.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1.Почему Ti-плазмида из Agrobacterium tumefaciens подходит для создания вектора — переносчика чужеродного гена в хромосомную ДНК растения?

2.Чем различаются бинарная и коинтегративная векторные системы?

3.Что такое репортерные гены и как они используются при трансформации растительных

клеток?

4.В чем заключается метод бомбардировки клеток микрочастицами, использующийся для трансформации растений?

5.Подробно опишите, как вы будете выделять растительный промотор, специфичный для тканей корней.

6.Как интегрировать чужеродный ген в ДНК хлоропластов?

7.Как получить трансгенное растение, не содержащее маркерного гена?

8.Как повысить активность растительного промотора?

ГЛАВА 18.

Генная инженерия растений: применение

Основной целью биотехнологических экспериментов на растениях является создание новых сортов культурных растений. Большинство ранних исследований было направлено на получение высокоурожайных сортов растений без изменения их пищевой ценности. В растения вводили гены, обеспечивающие их устойчивость к насекомым-вредителям, вирусам, гербицидам, неблагоприятным условиям окружающей среды, и гены, замедляющие старение. Часть этих работ мы рассмотрим ниже. Кроме того, проводились эксперименты по изменению окраски цветов и качества растительных продуктов, а также по использованию растений в качестве «биореакторов".

Выведение растений, устойчивых к насекомымвредителям, вирусам и гербицидам

Растения, устойчивые к насекомым-вредителям

Если бы хлебные злаки можно было изменять методами генной инженерии так, чтобы они продуцировали функциональные инсектициды, то мы получили бы культуры, устойчивые к насекомым-вредителям и не требующие опрыскивания дорогостоящими и опасными химическими пестицидами (зачастую такое опрыскивание приходится проводить от шести до восьми раз в течение вегетационного периода). По оценкам, в 1995 г. на химические инсектициды во всем мире было израсходовано примерно 4 млрд. долларов. Отсюда следует, что себестоимость зерна при возделывании культур, устойчивых к насекомым-вредителям, была бы ниже, чем для неустойчивых. Кроме того, биологические инсектициды обычно действуют лишь на строго ограниченное число видов насекомых и безопасны для человека и других высших животных.

Для создания растений, устойчивых к насекомым-вредителям, с помощью генноинженерных методов были разработаны различные стратегии. В одном случае использовали ген инсектицидного протоксина, продуцируемого одним из подвидов Bacillus thuringiensis (гл. 15). В другом — гены растительных белков типа ингибиторов амилазы или протеиназ, эффективных в отношении широкого круга насекомых. Насекомое, в организм которого попадал один из этих ингибиторов, было не способно переваривать растительную пищу, потому что ингибиторы препятствовали гидролизу крахмала или растительных белков.

Протоксин В. thuringiensis — это безопасное средство защиты растений: попадая в окружающую среду, он теряет активность. К сожалению, множество вредителей хлебных злаков питаются внутренними тканями растения, так что препараты В. thuringiensis, распыляемые на поверхность растений, оказываются малоэффективными. Эту проблему можно решить, если обеспечить экспрессию генов токсинов в самих растениях. Распылять инсектициды в этом случае не потребуется и токсины не попадут в окружающую среду, а кроме того, не возникнет проблем, связанных с ограничением времени их действия в результате разложения. Задача биотехнологов состоит в создании трансгенного растения, которое синтезировало бы активную форму бактериального инсектицида в количестве, достаточном для защиты растения от вреди-

390 ГЛАВА 18

Таблица 18. L Экспрессия некоторых генов, кодирующих инсектициды ßacillus thuringiensis в трансгенных растениях 1) 2)

Растение

Ген

Экспрессия %

Устойчивость к

 

 

 

насекомым

Табак

 

 

Нет

Табак

 

 

Да

Табак

 

 

Нет

Табак

 

 

Да

Табак

 

 

Да

Томат

 

 

Да

Хлопок

 

 

Нет

Хлопок

 

 

Да

Томат, табак

 

 

Да

Томат, табак

 

 

Да

Томат, табак

 

 

Да

 

 

 

 

1)По данным работы Ely, p. 105124, in Entwistle et al. (ed)., Bacillus thuri ngteniii, an Environmental Biopesticide: Theory and Practice, 1493.

2)Обозначения: полн. — полноразмерный ген протоксина; укороч. — укороченная версия гена протоксина; WT — кодоны дикого типа; РМ — частично измененные кодоны; FM — полностью измененные кодоны.

теля. Гены cryIA(a), cryIA(b) и сryIА(с), ответственные за синтез инсектицидных белков В. thuringiensis ssp, kurstaki, практически не экспрессируются в растениях (табл. 18.1), а для выведения представляющих коммерческий интерес жизнеспособных растений, устойчивых к насекомым-вредителям, необходимо, чтобы эти белки синтезировались в большом количестве. Пытаясь решить эту проблему, уменьшили размер встроенного гена так, чтобы синтезировалась только N-концевая часть молекулы токсина, и снабдили его сильным растительным промотором, чтобы повысить уровень экспрессии. Количество синтезируемого токсина при этом значительно увеличилось, и трансгенные растения получили некоторую защиту от насекомых-вредителей.

Далее была поставлена задача найти минимальную длину нуклеотидиной последовательности, обеспечивающей активность токсина. Чтобы определить, есть ли у разных токсинов одинаковый домен, сравнили аминокислотные последовательности протоксинов, продуцируемых различными штаммами B. thuringîensis. Оказалось, что N- концевой участок молекул протоксинов разных штаммов В. thuringiensis ssp. kurstaki высококонсервативен (гомология 98%), а С-концевой более вариабелен (гомология 45%). Дальнейшие исследования показали, что вся инсектицидная активность токсина обеспечивается первыми 646 N-концевыми аминокис-

лотными остатками молекулы протоксина, общая длина которой составляет 1156 аминокислот. Участок гена протоксина, кодирующий высококонсервативную аминокислотную последователь, клонировали, экспрессировали в бактериях и обнаружили, что в отношении защиты растений от насекомых отряда чешуекрылых в лабораторных условиях укороченный белок столь же эффективен, как и его нативная форма.

Для всестороннего изучения способности укороченного гена протоксина обеспечивать защиту растений от различных насекомых-вредителей были выведены трансгенные растения томата. Укороченный ген, снабженный сильным конститутивным 35S-промотором вируса мозаики цветной капусты и сайтом терминации транскрипции/полиаденилирования гена нопа-линсинтазы, клонировали в Т-ДНК коинтегративного Ti-плазмидного вектора (рис. 18.1). Вектор содержал также: 1) ген устойчивости к спектиномицину (Spcr), позволяющий проводить отбор либо в Е. coli, либо в A. tumefaciens; 2) сайт инициации репликации Е. соli; 3) ген неомицинфосфотрансферазы под контролем промотора и сайта терминации транскрипции/полиаденилирования гена нопалинсинтазы, позволяющий проводить отбор трансформированных растительных клеток в присутствии канамицина. Кроме того, коинтегративный вектор содержал правую фланкирующую последовательность Т-ДНК нопалиновой Ti-плазмиды и

Соседние файлы в предмете Биотехнология