
- •Вопросы к экзамену по дисциплине «Биология»
- •1. Уровни организации живых систем. Клеточный уровень. Основные компоненты и органеллы эукариотической животной клетки.
- •Органеллы общего назначения эукариотической клетки
- •Органеллы специального назначения
- •2. Структурно-функциональная организация прокариотической клетки (на примере бактериальной). Строение и функции оболочки бактериальной клетки
- •Компоненты цитоплазмы прокариотической клетки
- •3. Структурно-функциональная организация эукариотической клетки. Системы жизнеобеспечения.
- •Поверхностный комплекс животной эукариотической клетки
- •Функции компонентов ядра
- •Строение и функции митохондрий
- •4. Жизненный цикл клетки. Его периоды для клеток с разной степенью дифференцировки (гки, аки, митоз).
- •5. Митотический цикл. Митоз. Биологическое значение митоза. Возможная патология митоза.
- •Митотический цикл
- •6. Хромосомы эукариот, их химический состав. Уровни упаковки днк (днп) в метафазную хромосому. Химический состав нуклеиновых кислот
- •Компактизация днп в хромосоме эукариот на протяжении жизненного цикла клетки
- •7. Кариотип как видовая характеристика. Классификация метафазных хромосом человека по группам. Методы идентификации хромосом.
- •Роль разных участков метафазных хромосом
- •8. Нуклеиновые кислоты. Строение и функции рРнк, иРнк, тРнк. Функции и основная локализация нуклеиновых кислот в эукариотической клетке
- •9. Нуклеиновые кислоты. Строение и функции днк. Генетический код, его структура и свойства.
- •10. Воспроизведение на молекулярном уровне. Репликация днк. Понятие и репарации днк.
- •Виды репарации днк
- •11. Ген как функциональная единица генома эукариот. Кодирующие и регуляторные участки функциональной единицы.
- •Свойства гена
- •12. Этапы экспрессии гена эукариот в признак. Характеристика претранскрипционного этапа, транскрипции и процессинга.
- •13. Этапы экспрессии гена эукариот в признак. Характеристика трансляции и посттрансляционного этапов.
- •14. Мейоз – основной этап гаметогенеза. Фазы мейоза, их характеристика. Биологическое значение мейоза. Характеристика периодов и фаз мейоза
- •15. Генетический и гонадный пол. Понятие о генной регуляции гонадогенеза у человека. Роль генов hyas, hyai, hyars.
- •16. Периоды овогенеза у человека, их сущность. Место овогенеза в онтогенезе человека. Характеристика овогенеза.
- •17. Периоды сперматогенеза у человека, их сущность. Место мейоза в сперматогенезе. Характеристика сперматогенеза.
- •Характеристика спермато- и овогенеза
- •Отличия гамет от соматических клеток человека
- •18. Моногенное наследование. Характеристика а-д и а-р типов. Понятие о пенетрантности и экспрессивности генов.
- •20. Моногенное наследование. Наследование группы крови системы резусфактор. Развитие резус-несовместимости.
- •21. Моногенное наследование. Характеристика сцепленного с полом типа наследования признаков (х-р, х-д, у-сцепленного).
- •22. Особенности наследования признаков при их сцеплении с х-хромосомой. Наследование гемофилии.
- •23. Закономерности независимого наследования двух и более признаков (3-й закон Менделя). Виды взаимодействия неаллельных генов (комплементарность).
- •24. Полигенное наследование. Мультифакторные болезни человека, особенности их генетического формирования и прогнозирования (определение риска для потомства).
8. Нуклеиновые кислоты. Строение и функции рРнк, иРнк, тРнк. Функции и основная локализация нуклеиновых кислот в эукариотической клетке
Нуклеиновая кислота |
Количество нуклеотидов |
Функции, локализация в клетке |
РНК |
||
Информационная (иРНК) |
300 - 30 000 (до 100 000) |
|
Транспортная (тРНК) |
75 - 95 |
|
Рибосомальная (рРНК) |
до 100 000 |
|
Транспортно-матричная бактерий и пластид (тмРНК ) |
350 - 450 |
Участвуют в терминации трансляции, если иРНК не содержит стоп кодона |
РНК, участвующие в РНК-интерференции (подавлении экспрессии генов) |
||
МикроРНК (мкРНК или miRNA) |
21 - 22 |
Участвует в процессах деградации иРНК |
Малые интерферирующие (миРНК или siRNA) |
21 - 25 |
Метилируют ДНК промотора, что уменьшает активность генов |
РНК, участвующие в модификации других РНК |
|
|
Малые ядерные (мяРНК или snRNA) |
400 |
Участвуют в сплайсинге иРНК (удаляют интроны). Защищают теломерные районы хромосом |
Малые ядрышковые (мякРНК или snoRNA) |
21 - 25 |
Участвуют в химической модификации рРНК |
Каталитические (рибозимы или сRNA) |
до нескольких сотен |
Вносят разрывы или, наоборот, сшивают РНК-фрагменты |
По химическому строению РНК (рибонуклеиновая кислота) является нуклеиновой кислотой, во многом схожей с ДНК. Важными отличиями от ДНК является то, что РНК состоит из одной цепи, сама цепь более короткая, вместо тимина в РНК присутствует урацил, вместо дезоксирибозы — рибоза.
По строению РНК является биополимером, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из остатка фосфорной кислоты, рибозы и азотистого основания.
Обычными для РНК азотистыми основаниями являются аденин, гуанин, урацил и цитозин. Аденин и гуанин относятся к пуринам, а урацил и цитозин — к пиримидинам. Пуриновые основания состоят из двух колец, а пиримидиновые из одного. Кроме перечисленных азотистых оснований в РНК встречаются и другие (в основном различные модификации перечисленных), в том числе и характерный для ДНК тимин.
Рибоза — это пентоза (углевод, включающий пять атомов углерода). В отличие от дезоксирибозы имеет дополнительную гидроксильную группу, что делает РНК более активной в химических реакциях по сравнению с ДНК. Также как и во всех нуклеиновых кислотах пентоза в РНК имеет циклическую форму.
Нуклеотиды соединены в полинуклеотидную цепь ковалентными связями между остатками фосфорной кислоты и рибозой. Один остаток фосфорной кислоты связан с пятым атомом углерода рибозы, а другой (от соседнего нуклеотида) связан с третьим атомом углерода рибозы. Азотистые основания связаны с первым атом углерода рибозы и располагаются перпендикулярно фосфатно-пентозному остову.
Химическое строение РНК
Ковалентно связанные нуклеотиды формируют первичную структуру молекулы РНК. Однако по своему вторичному и третичному строению РНК бывают весьма различными, что связано со множеством выполняемых ими функций и существованием различных типов РНК.
Вторичная структура РНК формируется за счет водородных связей возникающих между азотистыми основаниями. Однако, в отличие от ДНК, у РНК эти связи возникают не между разными (двумя) цепями полинуклеотида, а за счет различных способов складывания (петли, узлы и др.) одной цепи. Таким образом, вторичная структура молекул РНК бывает куда разнообразнее, чем у ДНК (где это почти всегда двойная спираль).
Строение многих молекул РНК также подразумевает третичную структуру, когда сворачиваются уже спаренные за счет водородных связей участки молекулы. Например, молекула транспортной РНК на уровне вторичной структуры сворачивается в форму, напоминающую клеверный лист. А на уровне третичной структуры сворачивается так, что становится похожа на букву Г.
Рибосомальная РНК образует комплексы с белками (рибонуклеопротеиды).
Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.
Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.
Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.
Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.
Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК — первая молекула, которая была способна к самовоспроизведению в добиологических системах.