
- •Вопросы к экзамену по дисциплине “Химия”
- •2.Параметры состояния термодинамической системы. Интенсивные и экстенсивные параметры. Примеры.
- •Функция состояния термодинамической системы: внутренняя энергия. Первый закон термодинамики (формулировка и математическое выражение).
- •Первый закон термодинамики (первое начало термодинамики):
- •Способы расчета стандартной энтальпии химической реакции
- •По стандартным энтальпиям (теплотам) образования веществ
- •По стандартным энтальпиям (теплотам) сгорания веществ
- •5. Функция состояния термодинамической системы: энтропия. Второй закон термодинамики (формулировка и математическое выражение).
- •Второй закон термодинамики
- •7. Понятие экзергонических и эндергонических процессов, протекающих в организме.
- •8. Скорость реакции: истинная и средняя скорость реакции (определение и математические выражения). Факторы, влияющие на скорость химической реакции.
- •9. Закон действующих масс (здм). Выражение скорости химической реакции через здм. Константа скорости химической реакции. Факторы, влияющие на скорость и константу скорости химической реакции.
- •10. Классификации реакций, применяющиеся в кинетике: реакции гомогенные и гетерогенные; реакции простые и сложные (параллельные, последовательные, сопряженные, цепные). Примеры.
- •11. Молекулярность элементарного акта реакции. Порядок простой реакции.
- •12. Зависимость скорости реакции от температуры: правило Вант-Гоффа (формулировка и математическое выражение).
- •14. Энергетический профиль экзо- и эндотермической реакций.
- •15. Катализ. Понятия о гомогенном и гетерогенном катализе. Катализаторы положительные и отрицательные.
- •16. Энергетический профиль каталитической реакции.
- •17. Понятие о ферментативном катализе. Особенности каталитической активности ферментов.
- •18. Обратимые и необратимые по направлению реакции.
- •19. Константа химического равновесия. Термодинамические условия равновесия в термодинамических системах.
- •20. Диффузия (определение и примеры).
- •21. Осмос (определение и примеры). Эндо- и экзосмос (определение и примеры).
- •23. Роль осмоса в биосистемах (тургор, плазмолиз, гемолиз, изотонические растворы, гипертонические растворы).
- •24. Давление пара разбавленных растворов неэлектролитов. Первый закон Рауля.
- •25. Температура кипения и замерзания растворов. Второй закон Рауля.
- •26. Способы выражения концентрации растворов: массовая доля вещества в растворе, молярная концентрация, нормальная концентрация, титр.
- •27. Способы приготовления растворов (метод навески, метод разбавления, приготовление из фиксанала, метод смешивания).
- •28. Теория кислот и оснований Бренстеда (протолитическая теория). Равновесия в сопряженной кислотно-основной паре.
- •29. Теории кислот и оснований: теория электролитической диссоциации Аррениуса: понятия “электролитическая диссоциация”, “электролит”. “ион”, “катион”, “анион”.
- •Факторы, влияющие на степень диссоциации
- •Влияние температуры.
- •Влияние одноименных ионов.
- •Влияние природы растворителя.
- •31. Ступенчатый характер диссоциации слабых электролитов. Закон разбавления Оствальда (формулировка и математическое выражение).
- •32. Константа диссоциации слабых кислот и оснований (константа кислотности Ка, константа основности Кb) как константа равновесия процесса диссоциации. Показатель константы диссоциации (рКа и рКb).
- •33. Ионное произведение воды. Водородный показатель. РН и рОн растворов. Расчёт рН в растворах сильных и слабых электролитов.
- •35. Классификация буферных растворов. Примеры.
- •36. Уравнение для расчета рН буферных систем кислотного и основного типа (Гендерсона – Гассельбаха). Факторы, влияющие на значение рН буферных систем.
- •37. Интервал буферного действия (определение и формула для расчета).
- •38. Буферная емкость (определение; формула для расчета; факторы, влияющие на значение буферной емкости).
- •40. Состав и механизм действия аммиачного буфера.
- •41. Состав и механизм действия бикарбонатного буфера.
- •Механизм действия гидрокарбонатной буферной системы
- •42. Состав и механизм действия гемоглобинового буфера.
- •43. Состав и механизм действия фосфатного буфера.
- •44. Состав и механизм действия белкового буфера.
- •45. Кор (кислотно-основное равновесие организма). Основные показатели кор.
- •Возможные причины и типы нарушения кор организма
- •46. Гидролиз солей. Биологическое значение.
- •47. Теория строения комплексных соединений (теория Вернера): внутренняя и внешняя сфера, комплексообразователь, лиганды, координационное число, дентантность.
- •49.Классификация комплексных соединений по заряду внутренней сферы и характеру лиганда.
- •50. Номенклатура комплексных соединений.
- •51. Диссоциация комплексных соединений в растворе, константы нестойкости и стойкости комплексных соединений.
- •52. Биологическая роль комплексных соединений в организме.
- •53. Металло-лигандный гомеостаз и причины его нарушения.
- •54. Роль биогенных элементов в организме: классификации, топография химических элементов, содержащихся в организме человека. Биологическая роль макро- и микроэлементов.
- •55. Какие явления относятся к поверхностным?
- •56. Поверхностное натяжение жидкостей (определение и формула для расчета). Механизм возникновения поверхностного натяжения. Факторы, влияющие на величину поверхностного натяжения.
- •Факторы, влияющие на поверхностное натяжение
- •57. Дайте определение понятию “адсорбция”. Основные термины (адсорбент, адсорбтив, адсорбат, десорбция).
- •58. Деление адсорбции в зависимости от природы действующих сил на химическую и физическую. Примеры.
- •59. Адсорбция на границе жидкость – газ: уравнение адсорбции Гиббса, его анализ. Изотерма адсорбции, предельная адсорбция г.
- •61. Ориентация молекул пав в поверхностном слое (принцип независимости поверхностного действия Ленгмюра). Правило Дюкло-Траубе.
- •62. Адсорбция на границе двух несмешивающихся жидкостей (адсорбция «жидкость – жидкость»).
- •63. Теория мономолекулярной адсорбции Ленгмюра. Уравнение Ленгмюра, его анализ.
- •64. Адсорбция на границе твёрдое тело – газ: удельная адсорбция; факторы, влияющие на адсорбцию газов на поверхности твердых адсорбентов.
- •65. Молекулярная адсорбция (адсорбция твердое тело – раствор неэлектролита или слабого электролита), её особенности. Факторы, влияющие на молекулярную адсорбцию.
- •66.Ионная адсорбция (адсорбция твердое тело – раствор сильного электролита), её особенности. Виды ионной адсорбции (эквивалентная, избирательная, ионнообменная).
- •68. Классификация дисперсных систем по размерам частиц диспергированного вещества: взвеси, коллоидные системы, истинные растворы.
- •69. Условия получения коллоидных растворов.
- •70. Методы получения коллоидных систем: диспергационные и конденсационные методы.
- •71. Пептизация как физико-химическое дробление осадков до частиц коллоидного размера. Адсорбционная пептизация. Диссолюционная пептизация. Биологическое значение пептизации.
- •72. Методы очистки коллоидных систем: фильтрация, ультрафильтрация. Диализ, электродиализ, компенсационный диализ (принцип работы аппарата «искусственная почка»).
- •Двойной электрический слой
- •Электрокинетический потенциал
- •74. Электрокинетические явления: электрофорез и электроосмос.
- •75. Оптические свойства коллоидных систем (опалесценция, эффект Фарадея – Тиндаля, окраска).
- •77. Агрегативная устойчивость коллоидных систем.
- •78. Явление коагуляции коллоидных систем. Скрытая и явная коагуляции. Факторы, вызывающие коагуляцию.
- •79. Коагуляция электролитами: правило Шульце – Гарди, порог коагуляции. Коагуляция смесями электролитов (аддитивное действие, антогонизм, синергизм).
- •80. Коллоидная защита, ее механизм. Биологическое значение.
- •81. Высокомолекулярные соединения (вмс). Классификация вмс: по природе происхождения (природные, синтетические, искусственные); по строению (линейные, разветвленные, сетчатые).
- •82. Растворы высокомолекулярных соединений (вмс) как истинные растворы, их особенности. Оптические и молекулярно–кинетические свойства растворов вмс.
- •83. Растворение вмс. Явление набухания вмс. Степень набухания как количественная характеристика процесса набухания. Факторы, влияющие на степень набухания.
- •84. Вязкость растворов вмс, её особенность. Причины высокой вязкости вмс. Характеристическая вязкость (уравнение Марка – Куна – Хаувинка). Факторы, влияющие на вязкость.
- •85. Белки как представители полиэлектролитов. Изоэлектрическое состояние белка, изоэлектрическая точка белка (иэт). Заряд белковой молекулы в кислой и щелочной средах.
- •86. Нарушение устойчивости растворов вмс: застудневание (факторы, влияющие на студнеобразование). Свойства студней. Синерезис, понятие об интермицелярной жидкости.
- •Свойства студней
- •87. Нарушение устойчивости растворов вмс: высаливание.
- •88. Нарушение устойчивости растворов вмс: коацервация.
18. Обратимые и необратимые по направлению реакции.
Состояние равновесия характерно для обратимых химических реакций.
Обратимая реакция — химическая реакция, которая при одних и тех же условиях может идти в прямом и в обратном направлениях.
Необратимой называется реакция, которая идет практически до конца в одном направлении. Условия необратимости реакции – образование осадка, газа или слабого электролита. Например: BaCl2 + H2SO4 = BaSO4 + 2HClK2S + 2HCl = 2KCl + H2SHCl + NaOH = NaCl + H2O.
Химическое равновесие — состояние системы, в котором скорость прямой реакции равна скорости обратной реакции.
Концентрации всех веществ в состоянии равновесия (равновесные концентрации) постоянны. Химическое равновесие имеет динамический характер. Это значит, что и прямая и обратная реакции при равновесии не прекращаются. Смещение равновесия в нужном направлении достигается изменением условий реакции.
Принцип Ле-Шателье — внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.
Увеличение давления смещает равновесие в сторону реакции, ведущей к уменьшению объема.
Повышение температуры смещает равновесие в сторону эндотермической реакции.
Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещают равновесие в сторону прямой реакции.
Катализаторы не влияют на положение равновесия, а только ускоряет его достижение.
19. Константа химического равновесия. Термодинамические условия равновесия в термодинамических системах.
Химическое равновесие – это состояние системы, в котором скорости прямой и обратной химических реакций равны между собой.
Концентрации веществ в состоянии равновесия называются равновесными концентрациями, их принято обозначать соответствующей химической формулой, взятой в квадратные скобки. Поскольку в состоянии равновесия vпр=vобр., то можно записать:
Перенесем постоянные (константы скорости) в одну часть уравнения, переменные (концентрации) в другую:
Отношение констант также является константой, обозначим ее K:
Полученная константа K называется константой равновесия обратимой химической реакции.
Запишем выражение для константы равновесия через концентрации реагирующих веществ.
Из выражения (3) следует, что для обратимой химической реакции в состоянии равновесия отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ в степенях, равных стехиометрическим коэффициентам, есть величина постоянная. Эта постоянная величина – константа равновесия данной реакции.
Уравнение (3) справедливо как для элементарных, так и для сложных реакций, так как в состоянии химического равновесия скорости прямой и обратной реакций будут одинаковыми для каждой элементарной стадии.
Константа равновесия зависит от температуры, но не зависит от концентраций реагирующих веществ.
Из выражения для константы равновесия следует, что она может принимать только положительные значения, поскольку является соотношением концентраций.
Если значение константы равновесия больше единицы, в равновесной системе преобладают продукты реакции. Это происходит потому, что константа скорости прямой реакции в данном случае бóльше, чем обратной (kпр.>kобр.), в итоге равновесие устанавливается в тот момент, когда прямая реакция прошла в бόльшей степени, чем обратная. При этом произведение концентраций продуктов реакции окажется больше, чем произведение
концентраций исходных веществ, то есть в равновесной системе будут преобладать продукты C и D. В таких случаях принято говорить, что при K>1 равновесие смещено в сторону образования продуктов реакции (вправо).
Если значение константы равновесия меньше единицы, в равновесной системе преобладают исходные вещества. Это происходит потому, что константа скорости обратной реакции больше, чем прямой, и исходные вещества, едва успев прореагировать, опять возвращаются в исходное состояние. То есть при K<1 равновесие смещено в сторону образования исходных веществ (влево).
Если константа равновесия равна единице, это значит, что в равновесной системе исходные вещества и продукты реакции присутствуют примерно в одинаковых количествах.
Химическое равновесие является динамическим, поскольку, несмотря на то что состав реакционной смеси после достижения химического равновесия во времени не изменяется, в системе продолжают протекать прямая и обратная реакции. Положение химического равновесия определяется как природой реагирующих компонентов, так и условиями протекания данной обратимой реакции. Это значит, что для некоторых реакций равновесие устанавливается при малых степенях превращения исходных веществ в продукты, а для других – наоборот, когда исходные вещества прореагировали почти полностью.
Таким образом, в состоянии равновесия в реакционной смеси присутствуют как исходные вещества, так и продукты реакции.