
- •Вопросы к экзамену по дисциплине “Химия”
- •2.Параметры состояния термодинамической системы. Интенсивные и экстенсивные параметры. Примеры.
- •Функция состояния термодинамической системы: внутренняя энергия. Первый закон термодинамики (формулировка и математическое выражение).
- •Первый закон термодинамики (первое начало термодинамики):
- •Способы расчета стандартной энтальпии химической реакции
- •По стандартным энтальпиям (теплотам) образования веществ
- •По стандартным энтальпиям (теплотам) сгорания веществ
- •5. Функция состояния термодинамической системы: энтропия. Второй закон термодинамики (формулировка и математическое выражение).
- •Второй закон термодинамики
- •7. Понятие экзергонических и эндергонических процессов, протекающих в организме.
- •8. Скорость реакции: истинная и средняя скорость реакции (определение и математические выражения). Факторы, влияющие на скорость химической реакции.
- •9. Закон действующих масс (здм). Выражение скорости химической реакции через здм. Константа скорости химической реакции. Факторы, влияющие на скорость и константу скорости химической реакции.
- •10. Классификации реакций, применяющиеся в кинетике: реакции гомогенные и гетерогенные; реакции простые и сложные (параллельные, последовательные, сопряженные, цепные). Примеры.
- •11. Молекулярность элементарного акта реакции. Порядок простой реакции.
- •12. Зависимость скорости реакции от температуры: правило Вант-Гоффа (формулировка и математическое выражение).
- •14. Энергетический профиль экзо- и эндотермической реакций.
- •15. Катализ. Понятия о гомогенном и гетерогенном катализе. Катализаторы положительные и отрицательные.
- •16. Энергетический профиль каталитической реакции.
- •17. Понятие о ферментативном катализе. Особенности каталитической активности ферментов.
- •18. Обратимые и необратимые по направлению реакции.
- •19. Константа химического равновесия. Термодинамические условия равновесия в термодинамических системах.
- •20. Диффузия (определение и примеры).
- •21. Осмос (определение и примеры). Эндо- и экзосмос (определение и примеры).
- •23. Роль осмоса в биосистемах (тургор, плазмолиз, гемолиз, изотонические растворы, гипертонические растворы).
- •24. Давление пара разбавленных растворов неэлектролитов. Первый закон Рауля.
- •25. Температура кипения и замерзания растворов. Второй закон Рауля.
- •26. Способы выражения концентрации растворов: массовая доля вещества в растворе, молярная концентрация, нормальная концентрация, титр.
- •27. Способы приготовления растворов (метод навески, метод разбавления, приготовление из фиксанала, метод смешивания).
- •28. Теория кислот и оснований Бренстеда (протолитическая теория). Равновесия в сопряженной кислотно-основной паре.
- •29. Теории кислот и оснований: теория электролитической диссоциации Аррениуса: понятия “электролитическая диссоциация”, “электролит”. “ион”, “катион”, “анион”.
- •Факторы, влияющие на степень диссоциации
- •Влияние температуры.
- •Влияние одноименных ионов.
- •Влияние природы растворителя.
- •31. Ступенчатый характер диссоциации слабых электролитов. Закон разбавления Оствальда (формулировка и математическое выражение).
- •32. Константа диссоциации слабых кислот и оснований (константа кислотности Ка, константа основности Кb) как константа равновесия процесса диссоциации. Показатель константы диссоциации (рКа и рКb).
- •33. Ионное произведение воды. Водородный показатель. РН и рОн растворов. Расчёт рН в растворах сильных и слабых электролитов.
- •35. Классификация буферных растворов. Примеры.
- •36. Уравнение для расчета рН буферных систем кислотного и основного типа (Гендерсона – Гассельбаха). Факторы, влияющие на значение рН буферных систем.
- •37. Интервал буферного действия (определение и формула для расчета).
- •38. Буферная емкость (определение; формула для расчета; факторы, влияющие на значение буферной емкости).
- •40. Состав и механизм действия аммиачного буфера.
- •41. Состав и механизм действия бикарбонатного буфера.
- •Механизм действия гидрокарбонатной буферной системы
- •42. Состав и механизм действия гемоглобинового буфера.
- •43. Состав и механизм действия фосфатного буфера.
- •44. Состав и механизм действия белкового буфера.
- •45. Кор (кислотно-основное равновесие организма). Основные показатели кор.
- •Возможные причины и типы нарушения кор организма
- •46. Гидролиз солей. Биологическое значение.
- •47. Теория строения комплексных соединений (теория Вернера): внутренняя и внешняя сфера, комплексообразователь, лиганды, координационное число, дентантность.
- •49.Классификация комплексных соединений по заряду внутренней сферы и характеру лиганда.
- •50. Номенклатура комплексных соединений.
- •51. Диссоциация комплексных соединений в растворе, константы нестойкости и стойкости комплексных соединений.
- •52. Биологическая роль комплексных соединений в организме.
- •53. Металло-лигандный гомеостаз и причины его нарушения.
- •54. Роль биогенных элементов в организме: классификации, топография химических элементов, содержащихся в организме человека. Биологическая роль макро- и микроэлементов.
- •55. Какие явления относятся к поверхностным?
- •56. Поверхностное натяжение жидкостей (определение и формула для расчета). Механизм возникновения поверхностного натяжения. Факторы, влияющие на величину поверхностного натяжения.
- •Факторы, влияющие на поверхностное натяжение
- •57. Дайте определение понятию “адсорбция”. Основные термины (адсорбент, адсорбтив, адсорбат, десорбция).
- •58. Деление адсорбции в зависимости от природы действующих сил на химическую и физическую. Примеры.
- •59. Адсорбция на границе жидкость – газ: уравнение адсорбции Гиббса, его анализ. Изотерма адсорбции, предельная адсорбция г.
- •61. Ориентация молекул пав в поверхностном слое (принцип независимости поверхностного действия Ленгмюра). Правило Дюкло-Траубе.
- •62. Адсорбция на границе двух несмешивающихся жидкостей (адсорбция «жидкость – жидкость»).
- •63. Теория мономолекулярной адсорбции Ленгмюра. Уравнение Ленгмюра, его анализ.
- •64. Адсорбция на границе твёрдое тело – газ: удельная адсорбция; факторы, влияющие на адсорбцию газов на поверхности твердых адсорбентов.
- •65. Молекулярная адсорбция (адсорбция твердое тело – раствор неэлектролита или слабого электролита), её особенности. Факторы, влияющие на молекулярную адсорбцию.
- •66.Ионная адсорбция (адсорбция твердое тело – раствор сильного электролита), её особенности. Виды ионной адсорбции (эквивалентная, избирательная, ионнообменная).
- •68. Классификация дисперсных систем по размерам частиц диспергированного вещества: взвеси, коллоидные системы, истинные растворы.
- •69. Условия получения коллоидных растворов.
- •70. Методы получения коллоидных систем: диспергационные и конденсационные методы.
- •71. Пептизация как физико-химическое дробление осадков до частиц коллоидного размера. Адсорбционная пептизация. Диссолюционная пептизация. Биологическое значение пептизации.
- •72. Методы очистки коллоидных систем: фильтрация, ультрафильтрация. Диализ, электродиализ, компенсационный диализ (принцип работы аппарата «искусственная почка»).
- •Двойной электрический слой
- •Электрокинетический потенциал
- •74. Электрокинетические явления: электрофорез и электроосмос.
- •75. Оптические свойства коллоидных систем (опалесценция, эффект Фарадея – Тиндаля, окраска).
- •77. Агрегативная устойчивость коллоидных систем.
- •78. Явление коагуляции коллоидных систем. Скрытая и явная коагуляции. Факторы, вызывающие коагуляцию.
- •79. Коагуляция электролитами: правило Шульце – Гарди, порог коагуляции. Коагуляция смесями электролитов (аддитивное действие, антогонизм, синергизм).
- •80. Коллоидная защита, ее механизм. Биологическое значение.
- •81. Высокомолекулярные соединения (вмс). Классификация вмс: по природе происхождения (природные, синтетические, искусственные); по строению (линейные, разветвленные, сетчатые).
- •82. Растворы высокомолекулярных соединений (вмс) как истинные растворы, их особенности. Оптические и молекулярно–кинетические свойства растворов вмс.
- •83. Растворение вмс. Явление набухания вмс. Степень набухания как количественная характеристика процесса набухания. Факторы, влияющие на степень набухания.
- •84. Вязкость растворов вмс, её особенность. Причины высокой вязкости вмс. Характеристическая вязкость (уравнение Марка – Куна – Хаувинка). Факторы, влияющие на вязкость.
- •85. Белки как представители полиэлектролитов. Изоэлектрическое состояние белка, изоэлектрическая точка белка (иэт). Заряд белковой молекулы в кислой и щелочной средах.
- •86. Нарушение устойчивости растворов вмс: застудневание (факторы, влияющие на студнеобразование). Свойства студней. Синерезис, понятие об интермицелярной жидкости.
- •Свойства студней
- •87. Нарушение устойчивости растворов вмс: высаливание.
- •88. Нарушение устойчивости растворов вмс: коацервация.
65. Молекулярная адсорбция (адсорбция твердое тело – раствор неэлектролита или слабого электролита), её особенности. Факторы, влияющие на молекулярную адсорбцию.
Молекулярная адсорбция – это адсорбция из растворов неэлектролитов (или очень слабых электролитов). При молекулярной адсорбции вещество адсорбируется на поверхности твѐрдого тела в виде молекул.
Особенности молекулярной адсорбции: наряду с растворѐнным веществом адсорбируются молекулы растворителя. Поэтому для адсорбции растворѐнного вещества его молекулы должны вытеснять с поверхности молекулы растворителя.
Экспериментально величину адсорбции «а» изучают, измеряя молярную концентрацию раствора до контакта с адсорбентом (с0) и после наступления адсорбционного равновесия (сs):
а – количество адсорбированного вещества, приходящееся на 1 г адсорбента; m – масса адсорбента, г: V – объѐм раствора, из которого идѐт адсорбция, л.
На молекулярную адсорбцию влияют:
равновесная концентрация растворѐнного вещества;
природа растворителя;
природа адсорбента;
природа растворѐнного вещества;
температура, время адсорбции.
66.Ионная адсорбция (адсорбция твердое тело – раствор сильного электролита), её особенности. Виды ионной адсорбции (эквивалентная, избирательная, ионнообменная).
Ионная адсорбция – это адсорбция из растворов сильных электролитов; в этом случае адсорбируется растворѐнное вещество на поверхности твѐрдого адсорбента в виде ионов.
Ионная адсорбция – процесс более сложный, так как в растворе присутствуют уже частицы как минимум 3 видов: катионы, анионы растворенного вещества и молекулы растворителя.
Особенности ионной адсорбции:
1. Адсорбируются заряженные частицы (ионы), а не молекулы.
2. Адсорбция происходит только на полярных адсорбентах, поэтому еѐ часто называют полярной адсорбцией.
3. Адсорбция сопровождается образованием двойного электрического слоя (ДЭС).
4. Адсорбция является избирательной, т.е. на каждом данном адсорбенте катионы и анионы адсорбируются неодинаково.
5. В основе ионной адсорбции лежат химические силы, и она чаще всего кинетически необратима.
6. Для ионной адсорбции характерно явление обменной адсорбции.
Факторы, влияющие на ионную адсорбцию
1. Химическая природа адсорбента
Чем более полярным является адсорбент, тем лучше он адсорбирует ионы из водных растворов. На активных центрах, несущих положительный заряд, адсорбируются анионы, на отрицательных - катионы.
2. Химическая природа ионов
а) На адсорбцию ионов большое влияние оказывает величина радиуса иона. Чем больше кристаллический радиус иона при одинаковом заряде, тем лучше он адсорбируется, так как с увеличением кристаллического радиуса иона возрастает его поляризуемость, а следовательно, способность притягиваться к полярной поверхности – адсорбироваться на ней. Одновременно увеличение кристаллического радиуса приводит к уменьшению гидратации иона, а это облегчает адсорбцию. В соответствии с этим ионы можно расположить в ряды по возрастающей способности к адсорбции. Эти ряды называют лиотропными рядами или рядами Гофмейстера:
б) Чем больше заряд иона, тем сильнее ион притягивается противоположно заряженной поверхностью твердого тела, тем сильнее адсорбция:
Особый интерес представляет адсорбция ионов поверхностью кристалла, в состав которого входят такие же ионы или родственные ионы. В этом случае адсорбцию можно рассматривать как кристаллизацию, т.е. достройку кристаллической решетки способными адсорбироваться на ней ионами. Это позволило Панету и Фаянсу сформулировать следующее правило:
На кристаллической поверхности адсорбента адсорбируются те ионы, которые способны достраивать кристаллическую решетку и дают труднорастворимое соединение с ионами, входящими в состав кристалла.
Различают 3 вида ионной адсорбции.
1. Эквивалентная адсорбция — это когда происходит адсорбция эквивалентного количества, как катионов, так и анионов. При этом сначала адсорбируется один из ионов, который затем притягивает из раствора к поверхности свой противоион. Такой вид ионной адсорбции встречается при поглощении адсорбентом из раствора слабых электролитов.
2.Обменная адсорбция происходит в том случае, если взамен поглощаемого иона адсорбент отдает в раствор ион того же знака заряда.
3. Специфическая адсорбция — это когда адсорбент избирательно и необменно поглощает только один вид ионов.
67. Хроматография. Условия проведения хроматографии. Классификация по механизму: адсорбционная, распределительная, ионообменная, хемосорбционная, молекулярно – ситовая. Классификация по технике выполнения: колоночная, бумажная, тонкослойная. Области применения хроматографии.
Хроматография — метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной (твёрдая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент).
По доминирующему механизму различают:
1) Адсорбционная хроматография основана на различии в адсорбционных свойствах разделяемых веществ. Компоненты, не адсорбирующиеся стационарной фазой, будут во время анализа находиться только в подвижной фазе, скорость их перемещения вдоль стационарной фазы будет максимально возможной. Наоборот, хорошо адсорбирующиеся компоненты будут медленно передвигаться вдоль стационарной фазы.
2) Распределительная хроматография основана на различиях в коэффициентах распределений, представляющих собой отношение концентрации вещества в неподвижной фазе — жидкости к концентрации вещества в подвижной фазе — газе или жидкости.
3) В ионообменной хроматографии разделение вещества связано с различием термодинамических констант ионного обмена определяемых ионов.
4) Хемосорбционная хроматография включает в себя несколько вариантов хроматографических процессов, общим для них является различие в термодинамических константах того или иного вида химического равновесия: констант растворимости (осадочная хроматография), констант нестойкости комплексных соединений (адсорбционно-комплекснообразовательная хроматография), констант реакций с переносом электрона (редокс-хрома- тография).
5) Молекулярно-ситовая хроматография (устаревшее название — гель- фильтрация) позволяет анализировать смеси, содержащие вещества со значительно различающимся размером молекул. В качестве стационарной фазы используют пористые тела — молекулярные сита, которые являются проницаемыми для молекул только определенного размера. Крупные молекулы, не попадая в поры, перемещаются вдоль стационарной фазы быстрее, чем мелкие. Молекулярно-ситовая хроматография чрезвычайно широко применяется в биохимии для разделения смесей биополимеров (например, белков) на фракции.
По технике выполнения (характеру процесса) разделяют хроматографию на:
колоночную (неподвижная фаза находится в колонке);
плоскостную (планарную) — бумажную и тонкослойную (неподвижная фаза — лист бумаги или тонкий слой сорбента на стеклянной или металлической пластинке);
капиллярную (разделение происходит в плёнке жидкости или слое сорбента, размещённом на внутренней стенке трубки);
хроматографию в полях (электрических, магнитных, центробежных и других сил).
Хроматография в настоящее время широко используется в:
Криминалистика: анализ образцов, полученных с мест преступления
Мониторинг загрязнений: для обнаружения небольших концентраций опасных загрязнителей в воздухе и воде.
Медицинская сфера: в процессе производства и контроле качества биологических и фармацевтических продуктов.
Пищевая промышленность: обнаружение порчи в пищевых продуктах, определение качества продуктов питания, а также контроле пищевых добавок.
Юридические действия: определить наличие алкоголя в крови и кокаина в моче.
Радиохимия: для характеристики радиоактивно меченных соединений и определения радиохимической чистоты.
Помимо этого, хроматография также используется для расшифровки ДНК и в биоинформатике, клинической диагностике заболеваний и расстройств, а также в различных исследовательских целях.