Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3227

.pdf
Скачиваний:
0
Добавлен:
15.11.2022
Размер:
3.56 Mб
Скачать

можно прочитать на экране и распечатать на принтере. Двоичные файлы не используют ASCII-коды, они часто имеют сложную внутреннюю структуру, например, объектный код программы или архивный файл. Все операционные системы должны уметь распознавать хотя бы один тип файлов – их собственные исполняемые файлы.

Специальные файлы – это файлы, ассоциированные с устройствами ввода-вывода, которые позволяют пользователю выполнять операции ввода-вывода, используя обычные команды записи в файл или чтения из файла. Эти команды обрабатываются вначале программами файловой системы, а затем на некотором этапе выполнения запроса преобразуются ОС в команды управления соответствующим устройством. Специальные файлы, так же как и устройства ввода-вывода, делятся на блок-ориентированные и байт-ориентированные.

Каталог – это, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений (например, файлы, содержащие программы игр, или файлы, составляющие один программный пакет), а с другой стороны – это файл, содержащий системную информацию о группе файлов, его составляющих. В каталоге содержится список файлов, входящих в него, и устанавливается соответствие между файлами и их характеристиками (атрибутами).

В разных файловых системах могут использоваться в качестве атрибутов разные характеристики, например:

информация о разрешенном доступе,

пароль для доступа к файлу,

владелец файла,

создатель файла,

признак «только для чтения»,

признак «скрытый файл»,

признак «системный файл»,

признак «архивный файл»,

признак «двоичный/символьный»,

181

признак «временный» (удалить после завершения процесса),

признак блокировки,

длина записи,

указатель на ключевое поле в записи,

длина ключа,

времена создания, последнего доступа и последнего изменения,

текущий размер файла,

максимальный размер файла.

Каталоги могут непосредственно содержать значения характеристик файлов, как это сделано в файловой системе FAT, или ссылаться на таблицы, содержащие эти характеристики, как это реализовано в ОС UNIX (рис. 5.1). Каталоги могут образовывать иерархическую структуру за счет того, что каталог более низкого уровня может входить в

каталог более высокого уровня.

 

 

8

3

1

4

Имя файла

Расширение

Атрибуты

 

 

 

 

 

 

Резервные

Время

Дата

 

№ первого блока

 

 

 

 

 

 

 

 

 

а)

 

Резервные

Размер

2

14

 

 

№ индексного дескриптора

Имя файла

 

 

б)

Рис. 5.1. Структура каталогов:

а– структура записи каталога FAT (32 байта);

б– структура записи каталога ОС UNIX

182

Иерархия каталогов может быть деревом или сетью (рис. 5.2). Каталоги образуют дерево, если файлу разрешено входить только в один каталог, и сеть – если файл может входить сразу в несколько каталогов. В Windows каталоги образуют древовидную структуру, а в UNIXе – сетевую. Как и любой другой файл, каталог имеет символьное имя и однозначно идентифицируется составным именем, содержащим цепочку символьных имен всех каталогов, через которые проходит путь от корня до данного каталога.

Логическая организация файла

Программист имеет дело с логической организацией файла, представляя файл в виде определенным образом организованных логических записей. Логическая запись – это наименьший элемент данных, которым может оперировать программист при обмене с внешним устройством. Даже если физический обмен с устройством осуществляется большими единицами, операционная система обеспечивает программисту доступ к отдельной логической записи. На рис. 5.3 показаны несколько схем логической организации файла. Записи могут быть фиксированной длины или переменной длины. Записи могут быть расположены в файле последовательно (последовательная организация) или в более сложном порядке, с использованием так называемых индексных таблиц, позволяющих обеспечить быстрый доступ к отдельной логической записи (индексно-последовательная организация). Для идентификации записи может быть использовано специальное поле записи, называемое ключом. В файловых системах ОС UNIX и Windows файл имеет простейшую логическую структуру – последовательность однобайтовых записей

183

а)

 

 

Корневой каталог

 

 

 

 

Файлы

б)

в)

Рис. 5.2. Логическая организация файловой системы:

а – одноуровневая; б – иерархическая (дерево); в – иерархическая (сеть)

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

l

l

 

 

 

 

l

 

 

 

 

 

l

 

 

 

l

 

 

l

 

 

Последовательность логических записей фиксированной длины

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II

 

11

 

 

 

 

12

 

 

13

 

 

 

 

 

 

14

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

12

 

 

 

 

 

13

 

 

 

14

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Последовательность логических записей переменной

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III

 

 

 

 

 

 

1

 

8

 

 

 

 

 

6

 

 

 

 

 

2

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Индексная таблицазапись 1 запись 2

 

запись 3

 

 

запись 4

 

запись 5

 

 

Индексная логическая операция

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Индекс

1

2

3

4

 

 

5

 

 

6

 

 

 

 

Индекс≡Ключ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Адрес

21

201

315

661

 

670

 

715

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 5.3. Способы логической организации файлов

184

Физическая организация и адрес файла

Физическая организация файла описывает правила расположения файла на устройстве внешней памяти, в частности, на диске. Файл состоит из физических записей – блоков. Блок – наименьшая единица данных, которой внешнее устройство обменивается с оперативной памятью. Непрерывное размещение – простейший вариант физической организации (рис. 5.4а), при котором файлу предоставляется последовательность блоков диска, образующих единый сплошной участок дисковой памяти. Для задания адреса файла в этом случае достаточно указать только номер начального блока. Другое достоинство этого метода – простота. Но имеются и два существенных недостатка. Во-первых, во время создания файла заранее не известна его длина, а значит не известно, сколько памяти надо зарезервировать для этого файла, во-вторых, при таком порядке размещения неизбежно возникает фрагментация, и пространство на диске используется не эффективно, так как отдельные участки маленького размера (минимально 1 блок) могут остаться не используемыми.

Следующий способ физической организации – размещение в виде связанного списка блоков дисковой памяти

(рис. 5.4б).

При таком способе в начале каждого блока содержится указатель на следующий блок. В этом случае адрес файла также может быть задан одним числом – номером первого блока. В отличие от предыдущего способа, каждый блок может быть присоединен в цепочку какого-либо файла, следовательно фрагментация отсутствует. Файл может изменяться во время своего существования, наращивая число блоков. Недостатком является сложность реализации доступа к произвольно заданному месту файла: для того, чтобы прочитать пятый по порядку блок файла, необходимо последовательно прочитать четыре первых блока, прослеживая цепочку номеров блоков. Кроме того, при этом способе количество данных файла, содержащихся в одном блоке, не равно степени двойки (одно слово израсходовано на номер следующего блока), а многие

185

программы читают данные блоками, размер которых равен степени двойки.

а)

1

 

б)

 

1

 

 

 

 

 

 

 

2

 

 

4

2

 

 

 

 

 

 

 

3

 

 

 

3

 

4

Файл

 

6

4

 

 

 

 

 

 

 

5

 

 

 

5

 

6

 

 

9

6

 

 

 

 

 

 

 

7

 

 

 

7

 

 

 

 

 

 

 

8

 

 

 

8

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

в)

3

5

1

2

3

4

5

6

7

Область

г)

1

индексов

 

2

 

 

3

 

 

 

Файл 2, 4,

4

5

 

5, 7

 

6

 

 

 

 

 

 

 

7

 

 

8

 

 

 

 

 

9

 

 

 

 

 

10

 

 

 

Рис. 5.4. Физическая организация файла:

а– непрерывное размещение; б – связанный список блоков;

в– связанный список индексов; г – перечень номеров блоков

Популярным способом, используемым, например, в файловой системе FAT, является использование связанного списка индексов. С каждым блоком связывается некоторый элемент – индекс. Индексы располагаются в отдельной области

186

диска (таблица FAT). Если некоторый блок распределен некоторому файлу, то индекс этого блока содержит номер следующего блока данного файла. При такой физической организации сохраняются все достоинства предыдущего способа, но снимаются оба отмеченных недостатка: во-первых, для доступа к произвольному месту файла достаточно прочитать только блок индексов, отсчитать нужное количество блоков файла по цепочке и определить номер нужного блока, и, во-вторых, данные файла занимают блок целиком, а значит, имеют объем, равный степени двойки.

Права доступа к файлу

Определить права доступа к файлу – значит определить для каждого пользователя набор операций, которые он может применить к данному файлу. В разных файловых системах может быть определен свой список дифференцируемых операций доступа. Этот список может включать следующие операции:

создание файла,

уничтожение файла,

открытие файла,

закрытие файла,

чтение файла,

запись в файл,

дополнение файла,

поиск в файле,

получение атрибутов файла,

установление новых значений атрибутов,

переименование,

выполнение файла,

чтение каталога,

и другие операции с файлами и каталогами.

Всамом общем случае права доступа могут быть описаны матрицей прав доступа, в которой столбцы соответствуют всем файлам системы, строки – всем пользователям, а на пересечении строк и столбцов указываются

187

разрешенные операции (рис. 5.5). В некоторых системах пользователи могут быть разделены на отдельные категории. Для всех пользователей одной категории определяются единые права доступа. Например, в системе UNIX все пользователи подразделяются на три категории: владельца файла, членов его группы и всех остальных.

 

 

 

Имена файлов

 

 

 

 

 

 

 

 

 

modem.txt

win.exe

class.dbf

unix.ppt

пользователей

 

 

 

 

 

kira

читать

выполнять

-

выполнять

 

 

 

 

 

 

выполнять

 

genya

читать

выполнять

-

 

 

 

 

 

читать

 

nataly

читать

-

-

выполнять

Имена

 

 

 

 

читать

 

писать

 

 

 

 

victor

читать

-

создать

-

 

 

 

 

 

 

Рис. 5.5. Матрица прав доступа

Различают два основных подхода к определению прав доступа:

избирательный доступ, когда для каждого файла и каждого пользователя сам владелец может определить допустимые операции;

мандатный подход, когда система наделяет пользователя определенными правами по отношению к каждому разделяемому ресурсу (в данном случае, файлу) в зависимости от того, к какой группе пользователь отнесен.

Кэширование диска

В некоторых файловых системах запросы к внешним устройствам, в которых адресация осуществляется блоками (диски, ленты), перехватываются промежуточным программным слоем-подсистемой буферизации. Подсистема

188

буферизации представляет собой буферный пул, располагающийся в оперативной памяти, и комплекс программ, управляющих этим пулом. Каждый буфер пула имеет размер, равный одному блоку. При поступлении запроса на чтение некоторого блока подсистема буферизации просматривает свой буферный пул и, если находит требуемый блок, то копирует его в буфер запрашивающего процесса. Операция вводавывода считается выполненной, хотя физического обмена с устройством не происходило. Очевиден выигрыш во времени доступа к файлу. Если же нужный блок в буферном пуле отсутствует, то он считывается с устройства и одновременно с передачей запрашивающему процессу копируется в один из буферов подсистемы буферизации. При отсутствии свободного буфера на диск вытесняется наименее используемая информация. Таким образом, подсистема буферизации работает по принципу кэш-памяти.

Общая модель файловой системы

Функционирование любой файловой системы можно представить многоуровневой моделью (рис. 5.6), в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в свою очередь, для выполнения своей работы использует интерфейс (обращается с набором запросов) нижележащего уровня.

Задачей символьного уровня является определение по символьному имени файла его уникального имени. В файловых системах, в которых каждый файл может иметь только одно символьное имя (например, FAT32), этот уровень отсутствует, так как символьное имя, присвоенное файлу пользователем, является одновременно уникальным и может быть использовано операционной системой. В других файловых системах, в которых один и тот же файл может иметь несколько символьных имен, на данном уровне просматривается цепочка каталогов для определения уникального имени файла. В файловой системе UNIX,

189

например, уникальным именем является номер индексного дескриптора файла (i-node).

Рис. 5.6. Общая модель файловой системы

На следующем, базовом, уровне по уникальному имени файла определяются его характеристики: права доступа, адрес, размер и другие. Как уже было сказано, характеристики файла могут входить в состав каталога или храниться в отдельных таблицах. При открытии файла его характеристики перемещаются с диска в оперативную память, чтобы уменьшить среднее время доступа к файлу. В некоторых файловых системах (например, HPFS) при открытии файла вместе с его характеристиками в оперативную память перемещаются несколько первых блоков файла, содержащих данные.

190

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]