
- •Электроника. Лекционный курс. Введение.
- •Классификация электронных приборов.
- •Этапы развития электроники.
- •Классификация веществ в зависимости от структурных особенностей твердых тел.
- •Межатомные связи. Их виды и характеристики.
- •Физические основы электронной техники. Элементы квантовой теории строения материи.
- •Классификация твердых тел по степени электропроводности. Картина энергетических зон в твердом теле.
- •Полупроводники и их свойства.
- •Основы статистики электронов и дырок в полупроводниках.
- •Законы движения носителей заряда в полупроводниках. Дрейфовый и диффузионные токи.
- •Явление дрейфа.
- •Явление диффузии.
- •Уравнение плотности полного тока в полупроводнике.
- •Электронно-дырочный переход (p-n переход).
- •Смещение p-n перехода в прямом направлении (прямое включение перехода).
- •Смещение p-n перехода в обратном направлении (обратное включение перехода).
- •Уравнение Шокли.
- •Вольт-амперная характеристика(вах)
- •Пробой p-n перехода
- •Вольт-амперная характеристика видов пробоя
- •Емкостные свойства p-n перехода
- •Полупроводниковые диоды
- •Рабочий режим диода.
- •Эквивалентные схемы диодов для различных режимов.
- •Температурные свойства диодов
- •Выпрямители. Схемы выпрямления.
- •Мостовая схема двухполупериодного выпрямителя
- •Импульсный режим работы диода
- •Стабилитроны
- •Параметрическом стабилизаторе.
- •Основные параметры стабилитронов
- •Варикапы
- •Основные параметры варикапов.
- •Туннельные диоды.
- •Основные параметры туннельных диодов.
- •Схемы автогенераторов на туннельных диодах.
- •Обращенные диоды.
- •Контакт (переход) металл-полупроводник. Диоды Шоттки.
- •Транзисторы.
- •Биполярные транзисторы.
- •Явление вторичного пробоя и модуляция толщины базы (эффект Эрли).
- •Эквивалентная схема транзистора для режима постоянного тока
- •Схемы включения биполярных транзисторов.
- •Вольт-амперные характеристики (вах) биполярных транзисторов (статические характеристики). Схемы для снятия вах.
- •Математические модели биполярных транзисторов.
- •Модель транзистора для большого сигнала (модель Эберса-Молла).
- •Модели транзистора в режиме малого сигнала (динамический режим).
- •Температурные свойства транзисторов.
- •Частотные свойства транзисторов.
- •Работа транзистора с нагрузкой (динамический режим).
- •Составной транзистор (схема Дарлингтона).
- •Эксплуатационные параметры транзистора.
- •Полевые транзисторы.
- •Полевой транзистор с управляющим p-n переходом.
- •Схемы включения транзисторов:
- •Полевые транзисторы с изолированным управляющим электродом (затвором).
- •Основные параметры полевых транзисторов.
- •Элементы памяти на основе моп-структур (Flesh-память).
- •Усилители электрических сигралов.
- •Классификация усилителей.
- •Основные технически показатели усилителей (параметры).
- •Характеристики усилителей.
- •Искажения в усилителях.
- •Схемотехника усилительных каскадов. Межкаскадные связи в усилителях.
- •Обобщенная структурная схема усилителя.
- •Графическая интерпретация процесса усиления сигнала транзисторной схемой с общим эмиттером.
- •Коллекторная стабилизация.
- •Эмиттерная стабилизация.
- •Полная эквивалентная схема унч с емкостной межкаскадной связью на основе биполярного транзистора, включенного по схеме с оэ.
- •Выходные каскады усилителей.
- •Построение проходной динамической характеристики.
- •Ключевой режим биполярного транзистора. Условия обеспечения статических состояний.
- •Динамика переключения ключей на биполярных транзисторах.
- •Цифровые ключи. Общие требования.
- •Структура цифрового ключа на комплементарной паре биполярных транзисторов.
- •Структура цифрового ключа на комплементарной паре полевых транзисторов (к-моп).
- •Усилители постоянного тока (упт). Дрейф нуля.
- •Параллельно-баласный каскад упт.
- •Дифференциальный усилитель (ду).
- •Операционные усилители (оу).
- •Структурная схема оу.
- •Основные параметры оу.
- •Схемы включения оу.
- •Виды и структура обратных связей в усилителе.
- •Генераторы электрических колебаний.
- •Релаксационные генераторы (генераторы импульсов).
- •Автогенераторы на оу с мостом Вина.
- •Автогенератор на оу с использованием моста Вина.
- •Генераторы релаксационных колебаний.
- •Блокинг-генераторы (бг).
- •Мультивибратор с коллекторно-базовыми связями. Автоколебательный режим.
- •Электроника Список литературы по курсу «Электроника»
Структура цифрового ключа на комплементарной паре биполярных транзисторов.
(с дополнительной симметрией)
Кл1
– включен
Кл2 – выключен
Кл1 – выключен
Кл2 – включен
Заряд – С*U=Iзар*tзар
;
Разряд - С*U=Iразр*tразр
;
Если Iзар=Iразр,
то =
,
или
Если Rоткрт2=Rоткрт3,
то =
.
Uвх=+Еп
Uвых=+Еп
Uвх=0В
Uвых=0В
Структура цифрового ключа на комплементарной паре полевых транзисторов (к-моп).
Т1 и Т2 – взаимодополняющие друг друга (комплементарные) транзисторы.
Еп выбирается из условия:
Еп≤|Uзипорт1|+|Uзипорт2|,
То исключается сквозной ток.
Uзипорт1 и Uзипорт2 - пороговые напряжения транзисторов Т1 и Т2 соответственно.
Достоинства цифрового К-МОП ключа
1. Низкое потребление энергии от Еп в статических состояниях.
2. Высокая помехоустойчивость, обусловленная высокой
разницей напряжений на выходе при различных состояниях ключа:
открытое – единицы мкВ;
закрытое – почти +Еп.
3. Повышенное быстродействие, т.к. заряд и разряд конденсатора
Сн происходят через транзисторы Т1 и Т2 большими токами Iст1 и Iст2, соответственно. Чем больше Еп, тем большие отпирающий потенциал на затворах транзисторов, тем выше значения Iст1 и Iст2, а значит и выше быстродействие.
Эти достоинства и отработанность технологии изготовления являются причиной широкого использования К-МОП ключей в интегральной схемотехнике.
Усилители постоянного тока (упт). Дрейф нуля.
Для усиления медленно изменяющихся напряжений или токов необходимы усилители, полоса пропускания которых начинается с нулевой частоты, т.е. fн=0. Такие усилители во многих случаях должны усиливать чрезвычайно слабые сигналы (в области микровольт), поэтому в них приходится применять несколько каскадов усиления.
Соединения каскадов между собой в таких усилителях, а также с источником сигналов, сопряжено с преодолением больших трудностей. Очевидно, что в УПТ в межкаскадных связях не могут быть использованы ни трансформаторы, ни разделительные конденсаторы.
Единственной схемой межкаскадной связи, пригодной для УПТ прямого усиления, является схема гальванической связи.
Однако, наличие такой связи создает, как минимум две проблемы:
1. Согласование режимов работы отдельных каскадов как по постоянному, так и по переменному току.
2. Дрейф нуля – это изменение выходного сигнала, не связанное с воздействием входного сигнала, а обусловленное внутренними процессами в усилителе (температурные и временные изменения параметров усилительных элементов – Iк0, β и т.д.).
Напряжение дрейфа на выходе УПТ может оказаться одного порядка с напряжением полезного сигнала или даже больше его, что приведет к недопустимым искажениям усиливаемого сигнала.
Два вида дрейфа нуля:
- абсолютный дрейф на выходе;
- приведенный дрейф ко входу.
Абсолютный дрейф нуля – это максимальное изменение напряжения на выходе при коротком замыкании на входе.
Приведенный ко входу дрейф равен отношению абсолютного дрейфа к коэффициенту усиления:
Величина Uдр вх ограничивает минимально различимый входной сигнал, т.е. определяет чувствительность усилителя.
Для борьбы с указанными проблемами УПТ прямого усиления применяются специальные схемно-технические решения.
Одним из главных решений повышения устойчивости работы УПТ являются применение балансных (мостовых) схем.