- •Электроника. Лекционный курс. Введение.
- •Классификация электронных приборов.
- •Этапы развития электроники.
- •Классификация веществ в зависимости от структурных особенностей твердых тел.
- •Межатомные связи. Их виды и характеристики.
- •Физические основы электронной техники. Элементы квантовой теории строения материи.
- •Классификация твердых тел по степени электропроводности. Картина энергетических зон в твердом теле.
- •Полупроводники и их свойства.
- •Основы статистики электронов и дырок в полупроводниках.
- •Законы движения носителей заряда в полупроводниках. Дрейфовый и диффузионные токи.
- •Явление дрейфа.
- •Явление диффузии.
- •Уравнение плотности полного тока в полупроводнике.
- •Электронно-дырочный переход (p-n переход).
- •Смещение p-n перехода в прямом направлении (прямое включение перехода).
- •Смещение p-n перехода в обратном направлении (обратное включение перехода).
- •Уравнение Шокли.
- •Вольт-амперная характеристика(вах)
- •Пробой p-n перехода
- •Вольт-амперная характеристика видов пробоя
- •Емкостные свойства p-n перехода
- •Полупроводниковые диоды
- •Рабочий режим диода.
- •Эквивалентные схемы диодов для различных режимов.
- •Температурные свойства диодов
- •Выпрямители. Схемы выпрямления.
- •Мостовая схема двухполупериодного выпрямителя
- •Импульсный режим работы диода
- •Стабилитроны
- •Параметрическом стабилизаторе.
- •Основные параметры стабилитронов
- •Варикапы
- •Основные параметры варикапов.
- •Туннельные диоды.
- •Основные параметры туннельных диодов.
- •Схемы автогенераторов на туннельных диодах.
- •Обращенные диоды.
- •Контакт (переход) металл-полупроводник. Диоды Шоттки.
- •Транзисторы.
- •Биполярные транзисторы.
- •Явление вторичного пробоя и модуляция толщины базы (эффект Эрли).
- •Эквивалентная схема транзистора для режима постоянного тока
- •Схемы включения биполярных транзисторов.
- •Вольт-амперные характеристики (вах) биполярных транзисторов (статические характеристики). Схемы для снятия вах.
- •Математические модели биполярных транзисторов.
- •Модель транзистора для большого сигнала (модель Эберса-Молла).
- •Модели транзистора в режиме малого сигнала (динамический режим).
- •Температурные свойства транзисторов.
- •Частотные свойства транзисторов.
- •Работа транзистора с нагрузкой (динамический режим).
- •Составной транзистор (схема Дарлингтона).
- •Эксплуатационные параметры транзистора.
- •Полевые транзисторы.
- •Полевой транзистор с управляющим p-n переходом.
- •Схемы включения транзисторов:
- •Полевые транзисторы с изолированным управляющим электродом (затвором).
- •Основные параметры полевых транзисторов.
- •Элементы памяти на основе моп-структур (Flesh-память).
- •Усилители электрических сигралов.
- •Классификация усилителей.
- •Основные технически показатели усилителей (параметры).
- •Характеристики усилителей.
- •Искажения в усилителях.
- •Схемотехника усилительных каскадов. Межкаскадные связи в усилителях.
- •Обобщенная структурная схема усилителя.
- •Графическая интерпретация процесса усиления сигнала транзисторной схемой с общим эмиттером.
- •Коллекторная стабилизация.
- •Эмиттерная стабилизация.
- •Полная эквивалентная схема унч с емкостной межкаскадной связью на основе биполярного транзистора, включенного по схеме с оэ.
- •Выходные каскады усилителей.
- •Построение проходной динамической характеристики.
- •Ключевой режим биполярного транзистора. Условия обеспечения статических состояний.
- •Динамика переключения ключей на биполярных транзисторах.
- •Цифровые ключи. Общие требования.
- •Структура цифрового ключа на комплементарной паре биполярных транзисторов.
- •Структура цифрового ключа на комплементарной паре полевых транзисторов (к-моп).
- •Усилители постоянного тока (упт). Дрейф нуля.
- •Параллельно-баласный каскад упт.
- •Дифференциальный усилитель (ду).
- •Операционные усилители (оу).
- •Структурная схема оу.
- •Основные параметры оу.
- •Схемы включения оу.
- •Виды и структура обратных связей в усилителе.
- •Генераторы электрических колебаний.
- •Релаксационные генераторы (генераторы импульсов).
- •Автогенераторы на оу с мостом Вина.
- •Автогенератор на оу с использованием моста Вина.
- •Генераторы релаксационных колебаний.
- •Блокинг-генераторы (бг).
- •Мультивибратор с коллекторно-базовыми связями. Автоколебательный режим.
- •Электроника Список литературы по курсу «Электроника»
Этапы развития электроники.
(Краткая историческая справка).
1. 1904 – 1950 г.г. – дискретная электроника на электровакуумных лампах, начало относится к 1883 г. (Открытие Т. А. Эдисоном термоэлектронной эмиссии). В 1904 г. Флеминг создал первый ламповый детектор – первая электронная лампа. В 1907 г. Форест Ли ввел в лампу Флеминга управляющий электрод-сетку, что позволило создать электровакуумный триод, способный генерировать и усиливать электрические сигналы.
Изобретение в 1895 радиоприемника (Попов, Маркони) в значительной степени стимулировало создание приемно–усилительных электронных ламп с улучшенными характеристиками.
2. 1950 – 1960 г.г. – дискретная электроника на полупроводниковых приборах. Начало относится к 1947 г. (создание действующей модели биполярного транзистора – Шокли, Бардин, Браттейн). 1956 г. – нобелевская премия за биполярный транзистор. 1951 г. – промышленный выпуск биполярных транзисторов.
3. 1960 – 1980 г.г. – промышленный выпуск первых интегральных микросхем (ИМС) с малой степенью интеграции. 1962 г. – цифровые ИМС по технологии МОП. 1969 г. – ИМС с большой степенью интеграции (БИС). 1971 г. – разработка первых микропроцессоров. 1975 г. – разработка СБИС с числом логических ключей более 10000 и освоение промышленного выпуска.
4. 1980 г. – по настоящее время – устройства функциональной электроники – в основе работы акустооптические явления в полупроводниках, голография, системы на кристалле.
Классификация веществ в зависимости от структурных особенностей твердых тел.
Принято различать твердые вещества: аморфные, поликристаллические, монокристаллические.
Аморфные – вещества, которые не имеют какой-либо определенной (упорядоченной) внутренней структуры расположения атомов.
Поликристаллические вещества – состоят из отдельных гранул или малых областей. Каждая гранула имеет четко выраженную структуру, однако размеры и ориентация гранул в соседних областях совершенно произвольная.
Монокристаллические вещества – в них атомы пространственно упорядочены и образуют трехмерную периодическую структуру, называемую кристаллической решеткой.
Полупроводниковые устройства и интегральные схемы выполняют из монокристаллов, среди которых наибольшее значение имеют монокристаллы кремния (Si).
Межатомные связи. Их виды и характеристики.
Основную роль в процессе объединения атомов в кристалл играют электроны. Межатомная связь возникает благодаря тому, что атомы в веществе расположены близко друг к другу и влияют друг на друга.
По степени взаимного влияния атомов различают три вида межатомных связей: ионная, металлическая и ковалентная (парноэлектронная).
При ионной связи электроны перемещаются от одних атомов к другим. Как следствие, в структуре возникают ионы.
При металлической связи кристаллическая решетка из положительно заряженных ионов окружена «электронным газом».
При ковалентной связи внешние электроны, так называемые валентные, становятся общими для ближайших соседних атомов.
В твердых телах с ковалентной связью образуются различные кристаллические решетки, вид которых определяется узлами между направлениями различных ковалентных связей.
Кристаллическая решетка, в которой каждый электрон внешней орбиты связан ковалентными связями с остальными атомами вещества, является идеальной. В таком кристалле все валентные электроны прочно связаны между собой и свободных электронов нет. При температуре абсолютного нуля (-273˚С) полупроводники, состоящие из таких кристаллов, обладают свойствами идеальных изоляторов.
