
- •Литература
- •Лекция №1 Колебания и волны
- •Примеры решения задач
- •Колебательные системы в биологии и медицине
- •2. Механические волны
- •Примеры решения задач
- •Ультразвук
- •Эффект Доплера
- •Диагностическое применение эффекта Доплера
- •Примеры решения задач
- •Лекция №2 Течение и свойства жидкостей
- •Примеры решения задач
- •Формула Пуазейля
- •Примеры решения задач
- •Примеры решения задач
- •Лекция №3 Электростатика
- •4. Работа перемещения заряда в электрическом поле. Потенциал.
- •5. Использование электрического поля в медицине.
- •Примеры решения задач
- •Лекция №4 Контактные явления
- •Лекция №5 Электромагнетизм
- •5. Магнитные свойства тканей организма. Физические основы магнитобиологии.
- •Примеры решения задач
- •Лекция №6
- •2. Частица в электрическом поле
- •4. Электромагнитные счетчики скорости крови
- •Примеры решения задач
- •Лекция №7
- •Примеры решения задач
- •Лекция №8 Электрические колебания и электромагнитные волны
- •Примеры решения задач
- •Лекция №9 Оптика
- •4. Эндоскопическая аппаратура и ее применение в клинической практике.
- •Примеры решения задач
- •Лекция №10 Волновые свойства света
- •Примеры решения задач
- •Лекция №11
- •Примеры решения задач
- •Лекция №12 Квантовые свойства света и строение атома
- •Примеры решения задач
- •4. Дискретность энергетических состояний атома. Постулаты Бора.
- •5. Квантовая теория строения атома водорода.
- •Примеры решения задач
- •Лекция №13 Рентгеновское излучение, его использование в медицине
- •3. Использование р.И. В медицинской практике
- •Лекция №14 Лазерное излучение, его использование в медицине.
- •4.Использование лазера в медицине
- •Примеры решения задач
- •Лекция №15 Магнито-резонансные явления, их применение в медицине.
- •Примеры решения задач
- •Лекция №16 Основы ядерной физики. Понятия ядерной медицины.
- •Примеры решения задач
Лекция №14 Лазерное излучение, его использование в медицине.
Оптические квантовые генераторы (ОКГ)
Природа и свойства лазерного излучения.
Воздействие лазерного излучения на организм.
Использование лазера в медицине.
Квантовыми генераторамиэлектромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов называются устройства, предназначенные для генерирования когерентных монохроматических узконаправленных пучков излучения большой мощности, основанные на вынужденном излучении атомов и молекул.
Квантовые генераторы излучения в области длин волн видимого и ик-излучений от 0,38 до 3 мкм называют оптическими квантовыми генераторами, или лазерами. Лазер-это прибор, который усиливает свет с помощью вынужденного излучения.
Квантовые генераторы излучения в области больших длин волн (микроволн) называются мюзерами.
В зависимости от причины, вызывающей квантовый переход с испусканием фотона, различают 2 вида излучения. Если возбужденная частица самопроизвольно переходит на нижний энергетический уровень, такое излучение называется спонтанным. Оно случайно и хаотично.
Другое излучение вынужденное, или индуцированное. Оно возникает при взаимодействии фотона с возбужденной частицей, если энергия фотона равна разности уровней энергии. В результате вынужденного квантового перехода от частицы будут распространяться в одном направлении 2 фотона: один-первичный, вынуждающий, а другой-вторичный, испущенный.
При вынужденном (индуцированном) излучении число переходов, совершаемых за 1с, зависит от числа фотонов, попадающих в вещество в это же время, т.е. от интенсивности света. Кроме того, вынужденные переходы будут определяться заполненностью, или, как говорят, населенностью соответствующих возбужденных энергетических состояний.
Индуцированное излучение тождественно падающему во всех отношениях, в том числе и по фазе, поэтому можно говорить о когерентном усилении электромагнитной волны.
Усиление э/м волн можно вызвать используя активную среду, в которой хотя бы для двух уровней было распределение частиц, обратное больцмановскому (инверсная населенность).
Состояние с инверсной населенностью можно создать, отбирая соответствующие частицы, например, светом или электрическим разрядом.
При электрическом разряде часть атомов неона переходит с основного уровня 1 на возбужденный уровень 3. Для чистого неона время жизни на этом уровне мало и атомы переходят на уровни 1 и 2, реализуя больцмановское распределение. Для создания инверсной населенности нужно каким-то образом увеличить населенность уровня 3 и уменьшить на уровне 2.
Атомы гелия способствуют увеличению населенности уровня 3. Первый возбужденный уровень гелия совпадает с уровнем 3 неона, поэтому при соударении возбужденного атома гелия с невозбужденным атомом неона происходит передача энергии.
Для разгрузки уровня 2 подбирают такой размер газоразрядной трубки, чтобы при соударении с ее стенками атом неона отдавал энергию, переходя с уровня 2 на 1. Так обеспечивается стационарная инверсная населенность уровней 2 и 3 неона.
В газоразрядной трубке (обычно кварцевой), d≈7мм, при Р~1ГПа находится смесь гелия и неона. В трубку вмонтированы электроды 3 для создания газового разряда. На концах трубки расположены плоско-параллельные зеркала 4 и 5, одно из них 5 полупрозрачное. Фотоны, возникающие при вынужденном излучении, в зависимости от направления их движения либо вылетают из боковой поверхности трубки, либо, многократно отражаясь от зеркал, сами вызывают вынужденные переходы. Т.о., пучок, перпендикулярный зеркалам, будет иметь наибольшее развитие и выходить наружу через полупрозрачное зеркало 5. Основные свойства лазерного излучения – строгая монохроматичность, достаточно большая мощность, узость пучка и когерентность.
3.Воздействие лазера на организмво многом схоже с воздействием электромагнитного излучения видимого и инфракрасного диапазонов. На молекулярном уровне такое воздействие приводит к изменению энергетических уровней молекул живого вещества, их перестройке, коагуляции белковых структур.
Физиологические эффекты лазерного воздействия связаны с фотодинамическим эффектом фотореактивации, эффектом стимуляции или угнетения биопроцессов, изменением функционального состояния как отдельных систем, так и организма в целом.