
Полезные материалы за все 6 курсов / Ответы к занятиям, экзаменам / Физиология 3
.docx1. Сосудисто-тромбоцитарный:
-местный спазм сосудов
-адгезия и агрегация тромбоцитов
-образование белого тромба
2. Коагуляционный
-образование протромбиназы(тканевая и кровяная)
-протромбин--> тромбин
-фибриноген--> фибрин
3. Ретракция фибринового сгустка и фибринолиз.
б) хар-ка фаз сосудисто-тромбоцитарного гемостаза:
После травмы наблюдается первичный спазм кровеносных сосудов. Он обусловлен выбросом в кровь в ответ на болевое раздражение адреналина и НА и длится 10-15 с. Потом наступает вторичный спазм, обусловленный активацией тромбоцитов и отдачей в кровь сосудосуживающих агентов - серотонина, адреналина и др. Повреждение сосудов сопровождается активацией тромбоцитов, в результате происходит адгезия, агрегация и образование тромбоцитарной пробки.
Факторы адгезии: фактор Виллебранда, коллаген, тормбоксан, эндотелиальный оксид озота
Факторы агрегации: АДФ, трмбин, адреналин, тромбоксан, фибриноген
Одновременно с высвобождением тромбоцитарных факторов происходит образованием тромбина, резко усиливающего агрегацию и приводящего к появлению сети фибрина, в которой застревают отдельные эритроциты и лейкоциты.
Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, т. е. наступает ее ретракция.
в)характеристика фаз коагуляционного гемостаза:
Первая фаза — образование протромбиназы может происходить по внешнему и внутреннему механизму. Внешний механизм предполагает обязательное присутствие тромбопластина (фактор III), внутренний же связан с участием тромбоцитов (фактор Р3)
Вторая фаза процесса свертывания крови — переход протромбина в тромбин под влиянием протромбиназы. фермент тромбин, обладает свертывающей активностью.
Третья стадия — переход фибриногена в фибрин Под влиянием тромбина от фибриногена отщепляются фибринопептиды и образуется фибрин-мономер
г)характеристика ретракции фибринового сгустка и фибринолиза:
Фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками. Ферментом, разрушающим фибрин, является плазмин
Фибринолиз, может протекать по внешнему и внутреннему механизму (пути). Внешний механизм активации фибринолиза осуществляется при участии тканевого активатора плазминогена (ТАП) и урокиназы. Внутренний механизм активации фибринолиза делится на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый фибринолиз протекает под влиянием факторов XIIа, калликреина. Хагеман-независимый фибринолиз сводится к очищению сосудистого русла от нестабилизированного фибрина
а) хар-ка свёртывающей и антисвёртывающей систем крови:
Свёртывающая система крови состоит из плазменных факторов гемакоагуляции. которые последовательно активируясь, обеспечивают образование тромба, что необходимо для остановки кровотечения
Антисвёртывающая система крови играет важную роль в поддержании крови в жидком состоянии и препятствует распространению тромба за пределы повреждающего участка сосуда.
б) хар-ка эндогенных (естественных) антикоагулянтов:
Естественные антикоагулянты делят на первичные и вторичные. Первичные антикоагулянты всегда присутствуют в циркулирующей крови, вторичные - образуются в результате протеолитического расщепления факторов свертывания крови.
Первичные антикоагулянты(антитромбин III, гепарин, протеин С, протеин S, тромбомодулин, альфа2-Антиплазмин, альфа2-антитрипсин и тд)
К вторичным антикоагулянтам (Антитромбин I, Метафактор Vа, Метафактор XIа, фибринопептиды и тд) относят факторы свертывания крови и продукты деградации фибриногена и фибрина, обладающие мощным антиагрегационным и противосвертывающим действием, а также стимулирующие фибринолиз.
в) хар-ка внешнего и внутреннего механизмов фибринолиза:
Фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками. Ферментом, разрушающим фибрин, является плазмин
Фибринолиз, может протекать по внешнему и внутреннему механизму (пути). Внешний механизм активации фибринолиза осуществляется при участии тканевого активатора плазминогена (ТАП) и урокиназы. Внутренний механизм активации фибринолиза делится на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый фибринолиз протекает под влиянием факторов XIIа, калликреина. Хагеман-независимый фибринолиз сводится к очищению сосудистого русла от нестабилизированного фибрина
г) хар-ка эндотелиальных, нервных и гуморальных механизмов гемостаза и фибринолиза:
Ускорение свертывания крови и усиление фибринолиза при всех его состояниях обусловлены повышением тонуса симп. части АНС и поступлением в кровоток адреналина и НА. При этом активируется фактор Хагемана, что приводит к запуску внешнего и внутреннего механизма образования протромбиназы, а также стимуляции Хагеман-зависимого фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III , что способствует резкому ускорению свертывания крови. Из эндотелия также выделяются ТАП и урокиназа, приводящие к стимуляции фибринолиза
В случае повышения тонуса парасимпатической части АНС (раздражение блуждающего нерва, введение АХ) также наблюдаются ускорение свертывания крови и стимуляция фибринолиза. В этих условиях происходит выброс тромбопластина и активаторов плазминогена из эндотелия сердца и сосудов. Следовательно, основным эфферентным регулятором свертывания крови и фибринолиза является сосудистая стенка.
а) хар-ка частотно-временных параметров нагнетательной функции сердца:
1. ЧСС = 60-80 в минуту
2. ритмичность сокращений(ровномерность интервалов между сокращениями)
3. фазы сердечного цикла
Сердечный цикл = систола + диастола (при ЧСС = 75. сердечный цикл = 0,8с) 60сек : 75 = 0,8с
б)фазы сердечного цикла:
Под сердечным циклом понимают период, охватывающий одно сокращение — систола, и одно расслабление — диастола предсердий и желудочков.
Период напряжения (0,08 с):
-Фаза асинхронного сокращения желудочков (0,05 с).
-Фаза изометрического сокращения (0,03 с.)
Период изгнания: (0,25 с):
- фазы быстрого (0,12 с) и фазы медленного изгнания (0,13 с).
Время от начала расслабления желудочков до захлопывания полулунных клапанов называется протодиастолическим периодом (0,04 с). Изометрическое расслабление (0,08 с).
Наполнения желудочков кровью, который длится 0,25 с.
К концу фазы медленного наполнения возникает систола предсердий. Предсердия нагнетают в желудочки дополнительное количество крови
в)характеристика объёмных параметров нагнетательной функции сердца:
Сердечный выброс:
1.систолический(ударный) объём крови = 60-100мл
2.минутный объём кровотока = ЧСС*СОК = 4,5-5,0 л/мин
3.сердечный индекс = МОК/площадь поверхности тела ~ 3 л/мин*м в квадрате
4.фракция выброса УОК/КДО*100%
а) факторы движения крови по отделам сердца.
б) динамика кровяного давления в предсердиях и желудочках сердечного цикла.
в) роль клапанного аппарата сердца.
г) соотношение компонентов общего объема крови в желудочке сердца в покое и при физ. нагрузке.
Изменение минутного объема крови при работе. При мышечной работе отмечается значительное увеличение МОК до 25—30 л, что может быть обусловлено учащением сердечных сокращений и увеличением систолического объема за счет использования резервного объема. У нетренированных лиц МОК увеличивается обычно за счет учащения ритма сердечных сокращений. У тренированных при работе средней тяжести происходит увеличение систолического объема и гораздо меньшее, чем у нетренированных, учащение ритма сердечных сокращений. В случае очень тяжелой работы, например при требующих огромного мышечного напряжения спортивных соревнованиях, даже у хорошо тренированных спортсменов наряду с увеличением систолического объема отмечается учащение сердечных сокращений, а следовательно, и увеличение кровоснабжения работающих мышц, в результате чего создаются условия, обеспечивающие большую работоспособность. Число сердечных сокращений у тренированных может достигать при большой нагрузке 200—220 в минуту.
Клапаны сердца
Эффективная насосная функция сердца зависит от однонаправленного движения крови из вен в предсердия и далее в желудочки, создаваемого четырьмя клапанами (на входе и выходе обоих желудочков, рис. 23–1). Все клапаны (предсердно-желудочковые и полулунные) закрываются и открываются пассивно.
· Предсердно–желудочковые клапаны — трёхстворчатый клапан в правом желудочке и двустворчатый (митральный) клапан в левом — препятствуют обратному поступлению крови из желудочков в предсердия. Клапаны закрываются при градиенте давления, направленном в сторону предсердий, — т.е. когда давление в желудочках превышает давление в предсердиях. Когда же давление в предсердиях становится выше давления в желудочках, клапаны открываются.
От свободных краёв предсердно-желудочковых (АВ-) клапанов отходят сухожильные хорды (chordae tendineae), представляющие собой соединительнотканные тяжи. Прикрепляются сухожильные хорды к сосочковыми мышцами миокарда желудочков. При сокращении миокарда сокращаются и сосочковые мышцы, что не позволяет створкам клапанов выпячиваться в сторону предсердий в систолу желудочков. Вполне естественно, что при местном нарушении кровообращения миокарда вследствие недостаточного обеспечения кислородом и питательными веществами (обычно при инфаркте или приступе стенокардии) нарушается его сократительная способность. Ишемия миокарда сосочковых мышц приводит к выпячиванию створок в предсердия — створки клапанов расходятся и кровь затекает обратно в предсердия, что клинически проявляется систолическим шумом недостаточности митрального или (гораздо реже) трикуспидального клапана во время приступа стенокардии или при инфаркте миокарда.
Рис. 23–1. Клапаны сердца. Слева — поперечные (в горизонтальной плоскости) срезы через сердце, зеркально развёрнутые относительно схем справа. Справа — фронтальные срезы через сердце. Вверху — диастола, внизу — систола.
· Полулунные клапаны — аортальный клапан и клапан лёгочной артерии — расположены на выходе из левого и правого желудочков соответственно. Они предотвращают возврат крови из артериальной системы в полости желудочков. Оба клапана представлены тремя плотными, но очень гибкими «кармашками», имеющими полулунную форму и прикреплёнными симметрично вокруг клапанного кольца. «Кармашки» открыты в просвет аорты или лёгочного ствола, поэтому когда давление в этих крупных сосудах начинает превышать давление в желудочках (т.е. когда последние начинают расслабляться в конце систолы), «кармашки» расправляются кровью, заполняющей их под давлением, и плотно смыкаются по своим свободным краям — клапан захлопывется (закрывается).
a Механизм действия аортальных клапанов и клапанов лёгочной артерии отличается от функционирования АВ-клапанов следующими особенностями.
U Высокое давление в артериях в конце систолы заставляет полулунные клапаны резко захлопываться, в отличие от более постепенного («лёгкого») смыкания АВ-клапанов.
U Через узкое отверстие полулунных клапанов скорость изгоняемой крови намного выше, чем через большие предсердно-желудочковые отверстия.
U Высокая скорость закрытия и быстрый выброс крови подвергают края полулунных клапанов большему механическому воздействию, чем края АВ-клапанов.
U Наконец, АВ-клапаны поддерживаются сухожильными хордами, отсутствующие у полулунных клапанах.
a В основание створок аортального клапана (практически в полость «кармашков») открываются устья венечных артерий. Кровь в эти артерии поступает во время диастолы, когда давление в аорте превышает давление в левом желудочке и створки полулунных клапанов расправлены и сомкнуты. Соответственно, когда створки этих клапанов не смыкаются (например, вследствие деформации их свободных краёв, что служит одной из причин недостаточности аортального клапана), страдает коронарный кровоток, что в итоге вносит свой вклад в возникновение выраженной стенокардии напряжении, очень типичной для аортальной недостаточности.
а) хар-ка автоматии сердца, её субстрат и происхождение:
автоматия - способность клеток возбуждаться в силу причин , возникающих внутри самой клетки.
Субстрат: атипичная клетка миокарда(клетки проводящей системы)
Градиент:выражается в убываещей способности к автоматии различных участков проводящей системы, по мере их удаления от синусопредсердного узла, который генерирует импульсы с частотой 60-80 в минуту.
Природа: медленная спонтанная деполяризация атипичных клеток в диастолу.
б) хар-ка возбудимости клеток-водителей ритма и кардиомиоцитов:
возбудимость - спос-ть к генерации биоэлектрических ответов при раздражении.
. ПД возникает под влиянием клеток Проводящей СС, который достигает кардиомиоцитов, вызывая деполяризацию их мембран.
Фазы ПД кардиомиоцита:
1) быстрая деполяризация возникает за счет резкого повышения проницаемости мембраны Na, что приводит к возникновению быстрого входящего тока натрия.
2) начальная быстрая реполяризация.
3) фаза плато - основное значение имеют кальциевые каналы, т.к деполяризация вызывает активирование Ca2+-каналов - дополнительный поляризующий входящий ток.
4) быстрая конечная реполяризация - обусловлена постепенным понижением проницаемости мембран для Ca2+, повышением проницаемости для калия - восстановление МПП. (ПД 300-400мс)
5) ПП
Фазы ПД клеток ритма:
1) медл. диаст. деполяризация (накапливание калия )
2) быстрая деполяризация (быстрый вход Na после достижения КУД)
3) реполяризация - выход калия
4) ПП.
в) хар-ка проводимости миокарда , функции проводящей системы сердца:
ПСС - сововокупность атипичных мышечных клеток .
элементы ПСС:
- синоатриальный узел: водитель ритма. В нем генерируется ритм, который необходим для сердечной деят-ти 60-80 имп/мин.
- атриовентрикулярный узел: в нем задерживаются импульсы с целью координации сокращения предсердий и желудочков. Когда предсердия схвачены возбуждением, желудочки не получают импульсы в виду атриовентрикулярной задержки (40-50)
- пучок Гиса (30-40)
- волокна Пуркинье: диффузно распределяются по миокарду желудочков (30).
ф-ии ПСС: генерация ритмов возбуждения, координация сокращения предсердий и желудочков, синхронное сокращение клеток миокарда желудочка.
г) хар-ка сократимости миокарда и её соотношения во времени с возбудимостью и рефрактерностью миокарда:
особенности сократимости: раздельное сокращение предсердий и желудочков, подчиняется закону Старлинга, подчиняется закону все или ничего.
а)метод электрокардиографии, принципы анализа ЭКГ:
методика исследования электрической активности сердца, получила название электрокардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко применяется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.
Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три стандартных отведения от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога. Кроме того, регистрируют три униполярных усиленных отведения: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу.так же была предложена регистрация шести грудных отведений.
Анализ ЭКГ:
1.определение ритмичности сердечной деятельности.
2.определение продолжительности интервала R-R.(в норме 0,1)
3.определение ЧСС = 60сек/ R-R в сек
4.измерение продолжительности и амплитуды элемертов ЭКГ
б)метод аускультации сердца и фонокардография, происхождение тонов сердца, их характеристики:
Во время аускультации больной должен задержать дыхание на выдохе. При аускультации сердца необходимо знать точки выслушивания сердца:
Первая точка: место выслушивания митрального клапана-область верхушечного толчка( в пятом межреберье на 1-2см кнутри от среднеключичной линии)
Вторая точка: место выслушивания клапанов аорты-второе межреберье непосредственно у правого края грудины
третья точка: место выслушивания клапанов легочной артерии-второе межреберье непосредственно у левого края грудины
Четвёртая точка: место выслушивания трикуспидального клапана-прикрепление основания мечевидного отростка к грудине. ближе к её правому краю
Пятая точка (точка Боткина-Эрба): место выслушивания клапанов аорты-прикрепление 3-4 ребёр к левому краю грудины(третье межреберье у левого края грудины).
У здоровых людей выслушиваются только первый и второй тоны.первый тон возникает во время систолы желудочков, продолжительный, низкочастотный, лучше слышен в 1 и 5 точках. Второй тон возникает во время диастолы желудочков, короткий, высокочастотный, лучше выслушивается в 2 и3 точках.
Микрофон фонокардиографа ставят в точки выслушивания. используемые при аускультации сердца. Микрофон воспринимает звуковые колебания и преобразует их в электрические сигналы, которые усиливаются и передаются на систему частотных фильтров. позволяющих выделить звуковые колебания определённой частоты.
при анализе ФКГ определяют частоту, длительность и амплитуду тонов сердца, а также длительность ситолической и диастолической пауз сердца.
Генез тонов сердца: Первый тон-образуется в результате суммирования всех звукрвых явлений, возникающих в сердце в начале систолы. Второй тон-возникает в результате закрытия клапанов аорты и легочной артерии. Третий тон-обусловлен колебаниями стенки желудочка в период его быстрого кровенаполнения. Четвёртый тон-обусловлен сокращением миокарда предсердий, в частности, левого ушка.
в)метод поликардиографии, его клиническое значение:
метод поликардиографии, основанный на синхронной регистрации ЭКГ, фонокардиограммы (ФКГ) и сфигмограммы. Необходим для фазового анализа цикла сердечной деятельности у человека.
г)принципы эхокардиографии, магнитно-резонансной томографии и радионуклеидных методов исследования:
Эхокардиография — метод исследования механической деятельности и структуры сердца, основанный на регистрации отраженных сигналов импульсного ультразвука. При этом ультразвук в форме высокочастотных посылок (до 2,25—3 мГц) проникает в тело человека, отражается на границе раздела сред с различным ультразвуковым сопротивлением и воспринимается прибором. Изображение эхосигналов от структур сердца воспроизводится на экране осциллографа и регистрируется на фотопленке.
а) факторы движения крови в артериях:
-градиент кровяного давления между проксимальным и дистальным отделами сосудов, вследствии чего кровь течёт из области высокого давления крови в область низкого давления крови.
-сокращение ГМК артерии
-кинетическая энергия передаваемая крови систрлой сердца
б) хар-ка артериального пульса:
1.Ритмичность: в норме пульсовые колебания следуют друг за другом через равные промежутки времени.
2. частота пульса: её определяют путём подчёта числа пульсовых колебаний в минуту. в норме 60-80 ударов.
3. Напряжение пульса: определяется той силой которую нужно приложить, чтобы полностью сдавить пульсирующую артерию. В норме пульс удовлетворительного наполнения.
4. Наполнение: с целью оценки наполненпия пульса 2 и 3 пальцами левой руки сдавливают артерию выше места расположения пальцев правой руки. затем пальцы левой руки отжимают и оценивают величину наполнения. в норме величина наполнения удовлетворительна. при увеличении наполнения пульс называют полным, при снижении-пустым
5. Быстрота (крутизна нарастания): определяется мощностью систолы, определяетя сфигмографическим методом.
в) сфигмография, характеристики компонентов сфигмограммы:
Для анализа отдельного пульсового колебания производят его графическую регистрацию-сфигмограмму.
В сфигмограмме аорты и крупных артерий различают - подъем и спад. Подъем кривой - анакрота - возникает вследствие повышения АД и вызванного этим растяжения, которому подвергаются стенки артерий под влиянием крови, выброшенной из сердца в систолу. В конце систолы желудочка, когда давление в нем начинает падать, происходит спад пульсовой кривой - катакрота. В тот момент, когда желудочек начинает расслабляться и давление в его полости становится ниже, чем в аорте, кровь, выброшенная в артериальную систему, устремляется назад к желудочку; давление в артериях резко падает и на пульсовой кривой крупных артерий появляется глубокая выемка - инцизура. Движение крови обратно к сердцу встречает препятствие, так как полулунные клапаны под влиянием обратного тока крови закрываются и препятствуют поступлению ее в сердце. Волна крови отражается от клапанов и создает вторичную волну повышения давления, вызывающую вновь растяжение артериальных стенок. В результате на сфигмограмме появляется вторичный, или дикротический, подъем.
г) скорость распространения пульсовой волны, её клиническое значение:
СРПВ - это скорость с которой распространяется деформация сосудистой стенки
Клиническое значение: с возрастом в результате атеросклероза стенка сосуда становится тверже, её пластичность падает и СРПВ увеличивается.
а) факторы движения крови в венах и венозного возврата крови к сердцу:
1. Vis a fronte (сила спереди):
-отрицательное давление в грудной полости (присасывающая роль дыхания)
-отрицательное давление в устье предсердий в диастолу (присасывающая роль сердца)
2. Vis a tergo (сила сзади)
-остаточная кинетическая энергия сердца в виде давления в конце капиляров
-сократительная способность деятельности скелетных мышц
б) флебография, характеристики компонентов флебограммы:
На кривой венного пульса - флебограмме - различают три зубца: а, с, v Зубец а совпадает с систолой правого предсердия и обусловлен тем, что в момент систолы предсердия устья полых вен зажимаются кольцом мышечных волокон, вследствие чего приток крови из вен в предсердия временно приостанавливается. Во время диастолы предсердий доступ в них крови становится вновь свободным, и в это время кривая венного пульса круто падает. Вскоре на кривой венного пульса появляется небольшой зубец c. Он обусловлен толчком пульсирующей сонной артерии, лежащей вблизи яремной вены. После зубца c начинается падение кривой, которое сменяется новым подъемом — зубцом v. Последний обусловлен тем, что к концу систолы желудочков предсердия наполнены кровью, дальнейшее поступление в них крови невозможно, происходят застой крови в венах и растяжение их стенок. После зубца v наблюдается падение кривой, совпадающее с диастолой желудочков и поступлением в них крови из предсердий.(легче всего записывать венный пульс ярёмной вены)
в) центральное венозное давление, факторы его определяющие:
Центральное Венозное Давление-это давление в правом предсердии, 40-180 мм.вод.ст..
г) динамика кровяного давления в венах грудной полости и конечностей в зависимости от фазы дыхания и положения тела в пространстве:
В венах грудной полости, а также в яремных венах давление близко к атмосферному и колеблется в зависимости от фазы дыхания. При вдохе, когда грудная клетка расширяется, давление понижается и становится отрицательным, т. е. ниже атмосферного. При выдохе происходят противоположные изменения и давление повышается.
а)АД, факторы его определяющие, виды АД, их нормативы и возрастные изменения:
АД - давление которое оказывает кровь на стенку сосуда. АД=МОК*ОПСС. МОК+ЧСС*УОК. ОПСС=8gl/пr4.
Виды АД:
систолическое-систола левого желудочка
диастолическое-давление левого желудочка-диастола
пульсовое = систолическое-диастолическое
среднее = диастолическое + 1/3 пульсового
Систолическое АД у взрослого здорового человека 120-110 мм рт. ст.
систолическое АД у новоржденного 70
Диастолическое АД у взрослого здорового человека 80-70
Пульсовое у взрослого человека в покое 35-50
б) линейная скорость кровотока. факторы её определяющие, методы определения:
Линейная скорость кровотока-путь пройденный частицей крови (эритроцитом) за единицу времени (см/с)
V = Q/пr2
Линейная скорость кровотока в аорте 50 см/c
В капилярах 0,5 мм/c
В полых венах 25 см/c
методы определения те же что и для ОСК.
в) объёмная скорость кровотока, факторы её определяющие, методы определения:
Объёмная скорость кровотока-количество крови, протекающей через поперечное сечение сосуда в единицу времени (см/c)
Q = дельтаP/R
1. ультразвук: к артерии на небольшом расстоянии друг от друга прикладывают две маленькие пьезоэлектрические пластинки, которые способны преобразовывать механические колебания в электрические и обратно.
2.электромагнитная флоурометрия. Он основан на принципе электромагнитной индукции.
3. Метод плетизмографии состоит в регистрации изменений объема органа или части тела, зависящих от их кровенаполнения. Такая методика получила название окклюзионной (окклюзия — закупорка, зажатие) плетизмографии.
г) время круговорота крови, метод определения:
Время круговорота крови-время, в течение которого частица крови проходит большой и малый круги кровообращения (в среднем 27 систол сердца. При ЧСС 70—80 в минуту происходит приблизительно за 20-23с, из которых по большому кругу 4/5 времени, по малому 1/5)
1. Метод: в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны.
2. метод: скорость кругооборота (или только в малом, или только в большом круге) определяют при помощи радиоактивного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудов и в области сердца. После введения в локтевую вену радиоактивного изотопа натрия определяют время появления радиоактивного излучения в области сердца и исследуемых сосудов.
а) хар-ка инотропного, хронотропного, батмотропного и дромотропного регуляторных эффектов на сердце.
Под влиянием различных воздействий (нервной системы, гормонов) функции миокарда изменяются: влияние на ЧСС (т.е. на автоматизм) - «хронотропное действие», на силу сокращений (т.е. на сократимость) - «инотропное действие», на скорость предсердно-желудочкового проведения (проводимость) - «дромотропное действие», на возбудимость - «батмотропное действие».
Хронотропное действие: изменение скорости Медл.Диаст.Деполяризации, изменение МембрПП, изменение Ек (критический ур-нь деполяризации).