
- •Электроника
- •Содержание
- •Раздел 1. Элементы электронной техники
- •Раздел 2.Истчники электропитания
- •Раздел3. Аналоговые интегральные микросхемы
- •Раздел 4. Цифровые интегральные микросхемы
- •Раздел 5. Фотоэлектрические приборы
- •Раздел 6. Аналого-цифровые функциональные устройства
- •Раздел 7. Микроконтроллеры
- •Раздел 1
- •1.Пассивные элементы электрических цепей
- •1.1 Резисторы
- •1.2 Конденсаторы
- •1.3 Индуктивности
- •1.4 Трансформаторы
- •2. Диоды
- •2.1 Принцип работы диода
- •Вольт-амперная характеристика диода
- •4. Стабилитроны и стабисторы.
- •2.2 Выпрямительные диоды
- •2.3 Высокочастотные диоды
- •2.4 Импульсные диоды
- •2.5 Стабилитроны и стабисторы
- •3. Биполярные транзисторы
- •3.1 Общие принципы
- •3.2 Основные параметры транзисторов
- •3.3 Схемы включения транзисторов
- •3.4 Ключевой режим работы транзистора
- •3.5 Усилительный режим работы транзистора
- •3.5 Способы задания рабочей точки по постоянному току в усилительном режиме
- •3.6 Схема включения транзистора с общим коллектором
- •4. Полевые (униполярные) транзисторы
- •4.1 Полевой транзистор с p-n переходом
- •Входные и выходные характеристики полевого транзистора с p-n переходом и каналом n-типа
- •4.2 Полевые транзисторы с встроенным каналом
- •Входные и выходные характеристики моп - транзистора с встроенным каналом n -типа (кп 305)
- •4.3 Полевые транзисторы с индуцированным каналом
- •Крутизна
- •Особенности полевых моп транзисторов
- •4.4 Igbt транзистор
- •Режимы работы каналов и полярности электродных напряжений полевых транзисторов
- •5. Генераторы электрических сигналов
- •5.1 Принципы построения генераторов.
- •5.2 Генераторы гармонических сигналов.
- •5.3 Генераторы импульсов на логических элементах ттл и таймере 555 (кр1006ви).
- •6. Силовые полупроводниковые приборы
- •6.1 Динисторы.
- •6.2 Тиристор.
- •6.3 Симисторы
- •6.4 Igbt транзистор
- •Раздел 2
- •7. Источники питания
- •7.1 Однофазный мостовой выпрямитель
- •7.2Стабилизаторы напряжения
- •7.2.1 Параметрические стабилизаторы напряжения
- •Раздел 4
- •8. Аналоговые микросхемы.
- •8.1 Свойства оу
- •Практическая трактовка свойств оу
- •8.2 Основы схемотехники оу
- •Входной дифференциальный каскад
- •Современный входной дифференциальный каскад
- •8.3 Параметры операционных усилителей
- •8.4 Принцип отрицательной обратной связи
- •8.5 Основные схемы включения оу. Инвертирующее включение
- •Применение инвертирующего усилителя в качестве интегратора
- •Неинвертирующее включение
- •Ограничитель сигнала
- •8.6 Компараторы
- •8.7 Триггер Шмитта
- •8.8 Схема мультивибратора
- •8.9 Активные фильтры
- •Фильтр нч первого порядка
- •Раздел 4 Цифровые интегральные микросхемы
- •9. Цифровые интегральные микросхемы
- •Основные понятия
- •9.2 Обозначение и типы комбинационных логических микросхем
- •9.3 Структура ттл логических микросхем
- •Основные параметры логических ттл элементов
- •9.4 Микросхемы последовательного тип
- •9.4.1 Интегральные триггеры
- •9.4.2 Rs асинхронный триггер
- •9.4.3 Асинхронный d - триггер
- •9.4.4 Синхронный d - триггер со статическим управлением
- •9.4.5 Синхронный d -триггер с динамическим управлением
- •9.4.6 Синхронный jk - триггер
- •9.4. 8. Вспомогательные схемы для триггеров
- •9.4.9 Формирователь импульса
- •Мультиплексоры и демультиплексоры
- •Шифраторы, дешифраторы и преобразователи кодов
- •Счётчики импульсов
- •Регистры
- •Раздел 5 Фотоэлектронные приборы
- •2. Отоэлектрические приборы.
- •10.1 Понятия о оптоэлектронных приборах
- •10.2 Элементы оптоэлектроники.
- •Раздел 6
- •11. Аналого-цифровые преобразователи
- •Основные характеристики интегрирующих ацп
- •12. Цифро-аналоговые преобразователи
- •Характеристики интегральных микросхем цап
- •Раздел 7
- •13. Микропроцессоры
- •13.1 Cisc--процессоры
- •13.2 Risc—процессоры
- •14. Компьютерное моделирование электронных устройств
- •15. Используемая литература
Основные характеристики интегрирующих ацп
Тип микросхемы |
Особенности функционирования |
Число десятичных разрядов |
Погрешность преобразования. МЗР |
ICL7107 (572ПВ2/5) |
Двухтактное интегрирование с автокомпенсацией нуля |
3,5 |
±1 |
ICL7135 (572ПВ6) |
Двухтактное интегрирование с коррекцией нуля интегратора |
4,5 |
±2 |
ICL7117 (572ПВ7/8) |
Двухтактное интегрирование с режимом хранения данных |
3,5 |
±1 |
572ПВ9/Ю |
Двухтактное интегрирование с режимом хранения данных и индикацией разряда батареи |
3,5 |
±1 |
12. Цифро-аналоговые преобразователи
Назначение и виды цифро-аналоговых преобразователей. Цифро-аналоговым преобразователем (ЦАП) называется электронное устройство, предназначенное для преобразования цифровой информации в аналоговую. Они используются для формирования сигнала в виде напряжения или тока, функционально связанного с управляющим кодом. В большинстве случаев эта функциональная зависимость является линейной. Наиболее часто ЦАП используются для сопряжения устройств цифровой обработки сигналов с системами, работающими с аналоговыми сигналами. Кроме этого, ЦАП используются в качестве узлов обратной связи в аналого-цифровых преобразователях и в устройствах сравнения цифровых величин с аналоговыми.
Области применения ЦАП достаточно широки. Они применяются в системах передачи данных, в измерительных приборах и испытательных установках, в синтезаторах напряжения и генераторах сложных функций, для формирования изображений на экране дисплеев и др. В связи с этим разработано и выпускается большое количестве интегральных микросхем ЦАП.
Схемы ЦАП можно классифицировать по различным признакам: принципу действия, виду выходного сигнала, полярности выходного сигнала, элементной базе и др. По принципу действия наибольшее распространение получили ЦАП следующих видов: со сложением токов, с делением напряжения и со сложением напряжений. В микроэлектронном исполнении применяются только первые два типа.
По виду выходного сигнала ЦАП делят на два вида: с токовым выходом и выходом по напряжению. Для преобразования выходного тока ЦАП в напряжение обычно используются операционные усилители. По полярности выходного сигнала ЦАП принято делить на однополярные и двухполярные.
Управляющий код, подаваемый на вход ЦАП, может быть различным: двоичным, двоично-десятичным, Грея, унитарным и др. Кроме того, различными могут быть и уровни логических сигналов на входе ЦАП.
При формировании выходного напряжения ЦАП под действием управляющего кода обычно используются источники опорного напряжения. В зависимости от вида источника опорного напряжения ЦАП делят на две группы: с постоянным опорным напряжением и с изменяющимся опорным напряжением. Кроме этого, ЦАП делят по основным характеристикам: количеству разрядов, быстродействию, точности преобразования, потребляемой мощности.
Основные параметры ЦАП. Все параметры ЦАП можно разделить на две группы: статические и динамические. К статическим параметрам ЦАП относят: разрешающую способность, погрешность преобразования, диапазон значений выходного сигнала, характеристики управляющего кода, смещение нулевого уровня и некоторые другие.
К динамическим показателям ЦАП принято относить: время установления выходного сигнала, предельную частоту преобразования, динамическую погрешность. Рассмотрим некоторые из этих параметров.
Разрешающая способность ЦАП определяется как величина, обратная максимальному количеству градаций выходного сигнала. Так, например, если разрешающая способность ЦАП составляет 10~5, то это означает, что максимальное число градаций выходного сигнала равно 105. Иногда разрешающую способность ЦАП оценивают выходным напряжением при изменении входного кода на единицу младшего разряда, т. е. шагом квантования. Очевидно, что чем больше разрядность ЦАП, тем выше его разрешающая способность.
Погрешность преобразования ЦАП принято делить на дифференциальную и погрешность нелинейности. С ростом кода на входе ЦАП растет и выходное напряжение, однако при увеличении напряжения могут быть отклонения от линейной зависимости. Погрешностью нелинейности называют максимальное отклонение выходного напряжения от идеальной прямой во всем диапазоне преобразования.
Дифференциальной погрешностью называют максимальное отклонение от линейности для двух смежных значений входного кода.
Напрявление1сение смещения нуля определяется выходным напряжением при входном коде, соответствующем нулевому значению.
Время установления густ — это интервал времени от подачи входного кода до вхождения выходного сигнала в заданные пределы, определяемые погрешностью.
Максимальная частота преобразования — наибольшая частота дискретизации, при которой все параметры-ЦАП соответствуют заданным значениям.
По совокупности параметров ЦАП принято делить на три группы: общего применения, прецизионные и быстродействующие. Быстродействующие ЦАП имеют время установления меньше 100 нс. К прецизионным относят ЦАП, имеющие погрешность нелинейности менее 0,1%.
Принципы построения ЦАП. Существует несколько схем, являющихся базой для построения многих разновидностей ЦАП соответствующего класса. Для формирования соответствующих уровней выходного напряжения (или тока) к выходу ЦАП подключается необходимое количество опорных сигналов Еи Е2 ...Е„ (или токов /ь/2.../„), либо устанавливают соответствующее дискретное значение коэффициента деления Ки К2.-.К„.
Так,
например, если входной код является
двоичным, то результирующий ток
определяется
выражением:
где п
—
число двоичных разрядов входного тока,
N — и-разрядное цифровое слово.
Так же, как и для схемы с суммирование
Рис. 118.
токов, при б,= 1 соответствующий источник напряжения включен, а при bj=O — выключен. Результирующее напряжение на выходе равно сумме напряжений включенных опорных источников.
Так, например, для входного двоичного кода выходное напряжение определяется по формуле
Практическая схема ЦАП со сложением токов обычно выполняется на различных резистивных матрацах и одном источнике опорного напряжения. На рис. 27.4 приведена схема ЦАП с суммированием токов, в котором использован один источник опорного напряжения Ео,
и резистивная матрица типа R—2R, изображенная на рис. особенность этой резистивной матрицы заключается в том, что при любом положении ключей S1, S….-Sn входное сопротивление матрицы всегда равно R, а следовательно, ток, втекающий в матрицу, равен I0 = E0/R. Далее он последовательно делится в узлах А, В, С по двоичному закону. Двоичный закон распределения токов в ветвях резистивной матрицы соблюдается при условии равенства нулю сопротивления нагрузки. Так как нагрузкой резистивной матрицы является операционный усилитель ОУ, охваченный отрицательной обратной связью через сопротивление Roc то его входное сопротивление равно нулю с достаточно высокой точностью.
Рис.119 Схема ЦАП со сложением токов на резистивной матрице типа R—2R и структура резистивной матрицы (б)
Как следует из формулы (), выходное напряжение ЦАП зависит не только от входного кода N, но и от напряжения Ео опорного источника. Если допустить, что напряжение Ео меняется, то выходное напряжение ЦАП будет пропорционально произведению двух величин: входного кода и напряжения, поданного на вход опорного сигнала. В связи с этим такие ЦАП обычно называют перемножающими. В интегральных микросхемах перемножающих ЦАП источник опорного напряжения отсутствует, но имеется вход для его подключения.
Другой тип ЦАП со сложением токов реализуется на матрице со взвешенными резисторами. Схема ЦАП на основе взвешенных резисторов приведена на рис. Из этой схемы видно, что ЦАП состоит из матрицы двоично-взвешенных резисторов, сопротивления которых определяются по формуле Ri=R2'~"; переключателей на каждый разряд, управляемых входными сигналами; источника опорного напряжения Ео и сумматора на операционном усилителе ОУ в инвертирующем включении.
Входной код
Рис. 120 Схема ЦАП со сложением токов на матрице взвешивающих резисторов
Результирующий ток определяется суммой
что соответствует формуле (27.2).
Для обеспечения точности и стабильности резистивных матриц применяется лазерная подгонка резисторов. Дело в том, что диффузионные резисторы, используемые в ИМС, достаточно технологичны, но отличаются большой погрешностью. В связи с этим широко применяют тонкопленочные резисторы, обеспечивая их точность с помощью лазерной подгонки.