
- •Электроника
- •Содержание
- •Раздел 1. Элементы электронной техники
- •Раздел 2.Истчники электропитания
- •Раздел3. Аналоговые интегральные микросхемы
- •Раздел 4. Цифровые интегральные микросхемы
- •Раздел 5. Фотоэлектрические приборы
- •Раздел 6. Аналого-цифровые функциональные устройства
- •Раздел 7. Микроконтроллеры
- •Раздел 1
- •1.Пассивные элементы электрических цепей
- •1.1 Резисторы
- •1.2 Конденсаторы
- •1.3 Индуктивности
- •1.4 Трансформаторы
- •2. Диоды
- •2.1 Принцип работы диода
- •Вольт-амперная характеристика диода
- •4. Стабилитроны и стабисторы.
- •2.2 Выпрямительные диоды
- •2.3 Высокочастотные диоды
- •2.4 Импульсные диоды
- •2.5 Стабилитроны и стабисторы
- •3. Биполярные транзисторы
- •3.1 Общие принципы
- •3.2 Основные параметры транзисторов
- •3.3 Схемы включения транзисторов
- •3.4 Ключевой режим работы транзистора
- •3.5 Усилительный режим работы транзистора
- •3.5 Способы задания рабочей точки по постоянному току в усилительном режиме
- •3.6 Схема включения транзистора с общим коллектором
- •4. Полевые (униполярные) транзисторы
- •4.1 Полевой транзистор с p-n переходом
- •Входные и выходные характеристики полевого транзистора с p-n переходом и каналом n-типа
- •4.2 Полевые транзисторы с встроенным каналом
- •Входные и выходные характеристики моп - транзистора с встроенным каналом n -типа (кп 305)
- •4.3 Полевые транзисторы с индуцированным каналом
- •Крутизна
- •Особенности полевых моп транзисторов
- •4.4 Igbt транзистор
- •Режимы работы каналов и полярности электродных напряжений полевых транзисторов
- •5. Генераторы электрических сигналов
- •5.1 Принципы построения генераторов.
- •5.2 Генераторы гармонических сигналов.
- •5.3 Генераторы импульсов на логических элементах ттл и таймере 555 (кр1006ви).
- •6. Силовые полупроводниковые приборы
- •6.1 Динисторы.
- •6.2 Тиристор.
- •6.3 Симисторы
- •6.4 Igbt транзистор
- •Раздел 2
- •7. Источники питания
- •7.1 Однофазный мостовой выпрямитель
- •7.2Стабилизаторы напряжения
- •7.2.1 Параметрические стабилизаторы напряжения
- •Раздел 4
- •8. Аналоговые микросхемы.
- •8.1 Свойства оу
- •Практическая трактовка свойств оу
- •8.2 Основы схемотехники оу
- •Входной дифференциальный каскад
- •Современный входной дифференциальный каскад
- •8.3 Параметры операционных усилителей
- •8.4 Принцип отрицательной обратной связи
- •8.5 Основные схемы включения оу. Инвертирующее включение
- •Применение инвертирующего усилителя в качестве интегратора
- •Неинвертирующее включение
- •Ограничитель сигнала
- •8.6 Компараторы
- •8.7 Триггер Шмитта
- •8.8 Схема мультивибратора
- •8.9 Активные фильтры
- •Фильтр нч первого порядка
- •Раздел 4 Цифровые интегральные микросхемы
- •9. Цифровые интегральные микросхемы
- •Основные понятия
- •9.2 Обозначение и типы комбинационных логических микросхем
- •9.3 Структура ттл логических микросхем
- •Основные параметры логических ттл элементов
- •9.4 Микросхемы последовательного тип
- •9.4.1 Интегральные триггеры
- •9.4.2 Rs асинхронный триггер
- •9.4.3 Асинхронный d - триггер
- •9.4.4 Синхронный d - триггер со статическим управлением
- •9.4.5 Синхронный d -триггер с динамическим управлением
- •9.4.6 Синхронный jk - триггер
- •9.4. 8. Вспомогательные схемы для триггеров
- •9.4.9 Формирователь импульса
- •Мультиплексоры и демультиплексоры
- •Шифраторы, дешифраторы и преобразователи кодов
- •Счётчики импульсов
- •Регистры
- •Раздел 5 Фотоэлектронные приборы
- •2. Отоэлектрические приборы.
- •10.1 Понятия о оптоэлектронных приборах
- •10.2 Элементы оптоэлектроники.
- •Раздел 6
- •11. Аналого-цифровые преобразователи
- •Основные характеристики интегрирующих ацп
- •12. Цифро-аналоговые преобразователи
- •Характеристики интегральных микросхем цап
- •Раздел 7
- •13. Микропроцессоры
- •13.1 Cisc--процессоры
- •13.2 Risc—процессоры
- •14. Компьютерное моделирование электронных устройств
- •15. Используемая литература
8.4 Принцип отрицательной обратной связи
Принцип введения отрицательной обратной связи для операционного усилителя иллюстрируется рис. 82 Часть выходного напряжения возвращается через цепь обратной связи к входу усилителя. Если напряжение обратной связи вычитается из выходного напряжения, обратная связь называется отрицательной, если же оно суммируется со входным напряжением, такая связь называется положительной. Для операционных усилителей рассмотрим только отрицательную обратную связь. Усилитель, обладающий конечным коэффициентом усиления и охваченный петлей обратной связи, образует неинвертирующий усилитель.
Рис.65
Коэффициент усиления при разомкнутой цепи обратной связи равен А, а благодаря обратной связи из входного напряжения вычитается часть выходного (Uвых). В дальнейшим рассмотрим обобщенное напряжение. На усилительный блок поступает напряжение, равное UВХ--UВЫХ. Выходное напряжение больше входного в А раз: А(UВХ—UВЫХ)=UВЫХ. Или UВЫХ=[A/(1+A)] UВХ, и коэффициент усиления по напряжению при замкнутой цепи обратной связи UВЫХ / UВХ равен K=A/(1+A). Принята следующая терминология : K—коэффициент усиления при замкнутой цепи обратной связи, А—коэффициент усиления при разомкнутой цепи обратной связи, А—коэффициент передачи в петле обратной связи (петлевое усиление), 1+A—глубина обратной связи для дифференциального сигнала, или коэффициент грубости схемы. В простейшее случае цепь обратной связи представляет собой делитель напряжения . При этом схема работает как линейный усилитель, коэффициент усиления которого определяется только коэффициентом ослабления цепи обратной связи. Если в качестве цепи обратной связи применяется RC—цепь, то образуется активный фильтр.
8.5 Основные схемы включения оу. Инвертирующее включение
а) б)
Рис. 64. .
ОУ обычно применяется с обвязывающими цепями. Применение этих цепей позволяет выполнять с помощью его математические операции: алгебраическое суммирование, интегрирование, дифференцирование. Инвертирование - это изменение знака. Одновременно со всеми указанными операциями выполняется усиление входного сигнала.
Типовая схема инвертирующего включения представлена на рис. 64а. Схема замещения выходной цепи представлена на рис. 64б.
На основе свойств ОУ можно записать следующие уравнения:
Iвх=Uвх/Zвх;
Iос=Iвх;
Iос= -Uвых/Zос.
На основе этих уравнений получаем:
-Uвых/Zос=Uвх/Zвх;
Uвых= -Zос/Zвх.Uвх;
Uвых/Uвх= -Zос/Zвх,
где Zос/Zвх=Ку -коэффициент усиления схемы.
Отношение Uвых/Uвх в случае, если каждая из этих величин записана в преобразовании Лапласа, называется передаточной функцией схемы. Понятие передаточной функции - одно из основополагающих понятий теории управления.
Применение инвертирующего усилителя в качестве интегратора
Рис. 65.
Схема представлена на рис. 65. На ней: Zвх=Rвх; Zос=1/pCос. Тогда
-Uвых/Uвх=1/(pCос×Rвх)=1/pТи,
где Ти=Сос×Rвх-постоянная интегрирования.
Получение этих же зависимостей с помощью подробного описания на основе двух свойств ОУ:
iвх=uвх/Rвх;
iвх=iос.
Выходное напряжение ОУ:
uвых= –1/Cос∫iосdt= –1/Cос∫(uвх
/Rвх)dt= –1/(CосRвх)∫uвх dt
–1/(pСосRвх)×Uвх.
Диаграмма работы интегратора представлена на рис. 66.
Рис. 66.
Схема дифференцирования
Рис. 67.
.
Zвх=1/pСвх; Zос=Rос;
-Uвых/Uвх=Rос/(1/ рСвх)= рСвхRос=рТд,
где Тд=СвхRос - постоянная дифференцирования.
Диаграммы работы представлены на рис.68, где π/2 -сдвиг по фазе. Амплитуда выходного сигнала зависит от Тд (чем больше Тд, тем больше амплитуда).
Рис. 68.
Схема суммирования
Рис. 69.
. Исходные уравнения:
I1=Uвх1/Rвх1; I2=Uвх2/Rвх2; I3=Uвх3/Rвх3; Iос=I1+I2+I3; Uвых=Iос×Rос.
Отсюда
Uвых= Uвх1×Rос/Rвх1 + Uвх2× Rос/Rвх2 + Uвх3×Rос/Rвх3.
Входов может быть сколько угодно, знаки входных напряжений произвольны.
Если в качестве Zос применить Cос, то одновременно с суммированием будет выполняться и интегрирование.
На практике резисторы устанавливаются величиной 1кОМ÷десятки кОМ.