
- •Электроника
- •Содержание
- •Раздел 1. Элементы электронной техники
- •Раздел 2.Истчники электропитания
- •Раздел3. Аналоговые интегральные микросхемы
- •Раздел 4. Цифровые интегральные микросхемы
- •Раздел 5. Фотоэлектрические приборы
- •Раздел 6. Аналого-цифровые функциональные устройства
- •Раздел 7. Микроконтроллеры
- •Раздел 1
- •1.Пассивные элементы электрических цепей
- •1.1 Резисторы
- •1.2 Конденсаторы
- •1.3 Индуктивности
- •1.4 Трансформаторы
- •2. Диоды
- •2.1 Принцип работы диода
- •Вольт-амперная характеристика диода
- •4. Стабилитроны и стабисторы.
- •2.2 Выпрямительные диоды
- •2.3 Высокочастотные диоды
- •2.4 Импульсные диоды
- •2.5 Стабилитроны и стабисторы
- •3. Биполярные транзисторы
- •3.1 Общие принципы
- •3.2 Основные параметры транзисторов
- •3.3 Схемы включения транзисторов
- •3.4 Ключевой режим работы транзистора
- •3.5 Усилительный режим работы транзистора
- •3.5 Способы задания рабочей точки по постоянному току в усилительном режиме
- •3.6 Схема включения транзистора с общим коллектором
- •4. Полевые (униполярные) транзисторы
- •4.1 Полевой транзистор с p-n переходом
- •Входные и выходные характеристики полевого транзистора с p-n переходом и каналом n-типа
- •4.2 Полевые транзисторы с встроенным каналом
- •Входные и выходные характеристики моп - транзистора с встроенным каналом n -типа (кп 305)
- •4.3 Полевые транзисторы с индуцированным каналом
- •Крутизна
- •Особенности полевых моп транзисторов
- •4.4 Igbt транзистор
- •Режимы работы каналов и полярности электродных напряжений полевых транзисторов
- •5. Генераторы электрических сигналов
- •5.1 Принципы построения генераторов.
- •5.2 Генераторы гармонических сигналов.
- •5.3 Генераторы импульсов на логических элементах ттл и таймере 555 (кр1006ви).
- •6. Силовые полупроводниковые приборы
- •6.1 Динисторы.
- •6.2 Тиристор.
- •6.3 Симисторы
- •6.4 Igbt транзистор
- •Раздел 2
- •7. Источники питания
- •7.1 Однофазный мостовой выпрямитель
- •7.2Стабилизаторы напряжения
- •7.2.1 Параметрические стабилизаторы напряжения
- •Раздел 4
- •8. Аналоговые микросхемы.
- •8.1 Свойства оу
- •Практическая трактовка свойств оу
- •8.2 Основы схемотехники оу
- •Входной дифференциальный каскад
- •Современный входной дифференциальный каскад
- •8.3 Параметры операционных усилителей
- •8.4 Принцип отрицательной обратной связи
- •8.5 Основные схемы включения оу. Инвертирующее включение
- •Применение инвертирующего усилителя в качестве интегратора
- •Неинвертирующее включение
- •Ограничитель сигнала
- •8.6 Компараторы
- •8.7 Триггер Шмитта
- •8.8 Схема мультивибратора
- •8.9 Активные фильтры
- •Фильтр нч первого порядка
- •Раздел 4 Цифровые интегральные микросхемы
- •9. Цифровые интегральные микросхемы
- •Основные понятия
- •9.2 Обозначение и типы комбинационных логических микросхем
- •9.3 Структура ттл логических микросхем
- •Основные параметры логических ттл элементов
- •9.4 Микросхемы последовательного тип
- •9.4.1 Интегральные триггеры
- •9.4.2 Rs асинхронный триггер
- •9.4.3 Асинхронный d - триггер
- •9.4.4 Синхронный d - триггер со статическим управлением
- •9.4.5 Синхронный d -триггер с динамическим управлением
- •9.4.6 Синхронный jk - триггер
- •9.4. 8. Вспомогательные схемы для триггеров
- •9.4.9 Формирователь импульса
- •Мультиплексоры и демультиплексоры
- •Шифраторы, дешифраторы и преобразователи кодов
- •Счётчики импульсов
- •Регистры
- •Раздел 5 Фотоэлектронные приборы
- •2. Отоэлектрические приборы.
- •10.1 Понятия о оптоэлектронных приборах
- •10.2 Элементы оптоэлектроники.
- •Раздел 6
- •11. Аналого-цифровые преобразователи
- •Основные характеристики интегрирующих ацп
- •12. Цифро-аналоговые преобразователи
- •Характеристики интегральных микросхем цап
- •Раздел 7
- •13. Микропроцессоры
- •13.1 Cisc--процессоры
- •13.2 Risc—процессоры
- •14. Компьютерное моделирование электронных устройств
- •15. Используемая литература
Режимы работы каналов и полярности электродных напряжений полевых транзисторов
*
5. Генераторы электрических сигналов
Электронным генератором сигналов называют устройство, посредством которого энергия сторонних источников питания преобразуется в электрические колебания требуемой формы, частоты и мощности. Электронные генераторы входят составной частью во многие электронные приборы и системы. Так, например, генераторы гармонических или других форм колебаний используются в универсальных измерительных приборах, осциллографах, микропроцессорных системах, в различных технологических установках и др. В телевизорах генераторы строчной и кадровой разверток используются для формирования светящегося экрана.
Классификация генераторов выполняется по ряду признаков: форме колебаний, их частоте, выходной мощности, назначению, типу используемого активного элемента, виду частотно-избирательной цепи обратной связи и др. По назначению генераторы делят на технологические, измерительные, медицинские, связные. По форме колебаний их делят на генераторы гармонических и негармонических (импульсных) сигналов.
По выходной мощности генератора делят на маломощные (менее 1 Вт), средней мощности (ниже 100 Вт) и мощные (свыше 100 Вт). По частоте генераторы можно разделить на следующие группы: инфранизкочастотные (менее 10 Гц), низкочастотные (от 10 Гц до 100 кГц), высокочастотные (от 100 кГц до 100 МГц) и сверхвысокочастотные (выше 100 МГц).
По используемым активным элементам генераторы делят на ламповые, транзисторные, на операционных усилителях, на туннельных диодах, или динисторах, а по типу частотно-избирательных цепей обратной связи — на генераторы LC-, RC- и RL-тнпа. Кроме того, обратная связь в генераторах может быть внешней или внутренней.
5.1 Принципы построения генераторов.
Генератор является нелинейным устройством, которое преобразует, как уже сказано, энергию постоянного напряжения от источников питания в энергию колебаний. Обобщенная структурная схема генератора с внешней обратной связью приведена на рис. 50а. Она содержит усилитель с коэффициентом усиления K, частотно-избирательную цепь положительной обратной связи с коэффициентом передачи и цепь отрицательной обратной связи с коэффициентом передачи т.
Ф
ункционирование
генератора можно разделить на два этапа:
этап возбуждения генератора и этап
стационарного режима. На этапе возбуждения
колебаний в
генераторе появляются колебания и
амплитуда их постепенно нарастает. На
втором
этапе амплитуда колебаний стабилизируется
и генератор переходит в стационарный
режим. Форма колебаний на обоих этапах
показана на рис. 50б.
Рис. 50 Обобщенная структурная схема генератора (а) и процесс установления колебаний в генераторе (б)
На этапе возбуждения колебаний основную роль играет цепь положительной обратной связи. Эта цепь определяет условие возбуждения колебаний, их частоту и скорость нарастания амплитуды. После возникновения колебаний их амплитуда нарастает до тех пор, пока действие нелинейной отрицательной обратной связи не ограничит их рост.
Поскольку на этапе возбуждения цепь отрицательной обратной связи не работает, рассмотрим более простую схему генератора, изображенную на рис. 51 а. Цепь положительной обратной связи (3 обычно выполняется на пассивных элементах и потому имеет потери. Затухание сигнала в цепи обратной связи компенсируется усилением, которое обеспечивает усилитель У. Рассмотрим условия, при которых в схеме, приведенной на рис. 50б могут возникнуть колебания.
Рис.50 Структурная схема
генератора без отрицательной обратной
связи (а) и
форма выходного напряжения на начальной
стадии возбуждения колебаний (б)
процессами в транзисторах или ОУ. Эти колебания поступают на вход усилителя в виде сигнала Uax и, пройдя усилитель, появляются на его выходе в виде сигнала Uaux=UaxK. С выхода усилителя колебания через цепь положительной обратной связи вновь поступают на вход усилителя, поэтому
где К — комплексное значение коэффициента усиления, — передача цепи обратной связи.
откуда находим условие возбуждения колебаний:
Из уравнения следует, что напряжение на входе усилителя, а следовательно, и на его выходе может иметь конечное значение только при выполнении условия:
где произведение К называется петлевым усилением усилителя с обратной связью.
Условие возникновения колебаний () распадается на два условия, которые принято называть условиями баланса амплитуд и фаз:
Первое из условий () означает, что в стационарном режиме полное петлевое усиление на рабочей частоте генератора должно быть равно единице, т. е. модуль коэффициента усиления усилителя должен быть равен модулю обратной величины коэффициента передачи звена положительной обратной связи /K/ = | -1 |. Иначе говоря, насколько сигнал ослабляется при передаче через цепь обратной связи , настолько же он должен усиливаться усилителем.
Если коэффициент усиления усилителя |K|<|-1|, то колебания в схеме генератора будут затухающими, и наоборот, при | К \ > I -1 | колебания будут нарастающими, как показано на рис. 50 б. Для точного выполнения условия баланса амплитуд в схему генератора вводится отрицательная обратная связь, посредством которой изменяется петлевое усиление K. Возможны различные способы регулирования петлевого усиления: изменением коэффициента усиления усилителя, изменением коэффициента передачи цепи положительной обратной связи, изменением коэффициента передачи цепи отрицательной обратной связи. В качестве элементов, регулирующих петлевое усиление, используются или пассивные нелинейные элементы: термисторы, варисторы, позисторы, лампы накаливания и др. или транзисторы в режиме регулируемого сопротивления.
Второе условие называемое условием баланса фаз, означает, что полный фазовый сдвиг в замкнутом контуре генератора должен быть равен 2n, где n — любое целое число. Условие баланса фаз позволяет определить частоту генерируемых колебаний. Если условие баланса фаз выполняется только на одной частоте, то при выполнении условия баланса амплитуд колебания будут гармоническими. Если условие баланса фаз выполняется для ряда частот, то колебания будут негармоническими.
Кроме рассмотренных генераторов с внешней обратной связью, существуют генераторы с внутренней обратной связью, у которых положительная обратная связь обусловлена устройством используемого активного элемента. К таким элементам относятся некоторые типы полупроводниковых диодов, имеющих участки с отрицательным сопротивлением: динисторы, тиристоры, туннельные диоды, а также электронные лампы с вторичной эмиссией. В таких генераторах отрицательное сопротивление активного элемента используется для компенсации положительного сопротивления потерь в пассивных элементах. Эти генераторы могут использоваться как при синусоидальной форме выходного напряжения, так и при негармонических выходных напряжениях. Для формирования гармонических напряжений в таких генераторах обычно используются различные резонансные контуры.