
- •29.2 Исследование общего уравнения прямой на плоскости
- •29.3 Уравнение прямой с угловым коэффициентом
- •§30. Угол между двумя прямыми. Условие параллельности и перпендикулярности прямых
- •30.1 Случай уравнения прямых с угловыми коэффициентами
- •30.2 Случай общего уравнения прямых линий
- •31.4 Уравнение прямой «в отрезках»
- •§32. Расстояние от точки до прямой на плоскости
- •§§33 35 Кривые второго порядка
- •§33 Эллипс, как кривая второго порядка. Его полуоси, эксцентриситет, фокусы и директрисы. Окружность в качестве частного случая эллипса.
- •33.1 Эллипс, как кривая второго порядка.
- •33.2 Исследование формы эллипса. Его эксцентриситет, фокусы и директрисы.
- •33.3 Окружность, как частный случай эллипса
- •33.4 Общее уравнение окружности
- •§34 Гипербола и парабола как кривые второго порядка. Их эксцентриситет, фокусы и директрисы. Асимптоты гиперболы.
- •34.1 Гипербола
- •34.2 Парабола
- •34.3 Одно свойство фокусов и директрис
- •§35. Классификация линий второго порядка.
- •35.1 Преобразование координат при повороте осей.
- •35.2 Приведение квадратичной формы второго порядка от двух переменных к каноническому виду.
- •35.3 Упрощение уравнения второго порядка от двух переменных.
- •35.4 Классификация линий второго порядка
- •§36.Плоскость в пространстве. Уравнение плоскости по точке и нормали. Общее уравнение плоскости и его исследование.
- •36.1 Уравнение плоскости по точке и нормали
- •36.2 Общее уравнение плоскости и его исследование
- •§37. Условия параллельности и перпендикулярности двух плоскостей, угол между ними
- •37.1 Взаимное расположение двух плоскостей
- •§39. Расстояние от точки до плоскости
- •40.3 Параметрическое уравнение прямой в пространстве
- •§41. Приведение общего уравнения прямой к каноническому виду
- •Найти одну из точек на прямой
- •2) Найти направляющий вектор прямой .
- •§42. Уравнение прямой в пространстве, проходящей через две заданные точки
- •§43. Условия параллельности, перпендикулярности, компланарности прямых
- •4 3.1 Взаимное расположение двух прямых в пространстве
- •44.2 Угол между прямой и плоскостью. Условие их перпендикулярности
- •44.3 Точка пересечения прямой и плоскости
- •44.4 Доказательство формулы (39.1)
- •44.5 Доказательство того, что точки находятся по одну или по разные стороны от плоскости
- •§45. Расстояние от точки до прямой в пространстве
- •§46. Расстояние между скрещивающимися прямым
- •§47. Поверхности второго порядка
- •47.1Общее и каноническое уравнение поверхностей второго порядка.
- •47.2 Эллипсоид
- •47.3 Гиперболоиды
- •1. Однополостный гиперболоид
- •2.Двуполостной гиперболоид
- •47.4 Параболоиды
- •I.Эллиптический параболоид
- •II Гиперболический параболоид
- •47.5 Цилиндрические поверхности второго порядка
- •I.Эллиптический цилиндр
- •II. Гиперболический цилиндр
- •III. Параболический цилиндр
- •47.6 Конус второго порядка
- •Общее определение конической поверхности
- •47.7 Распадающиеся и вырожденные поверхности второго порядка
- •47.8 Классификация поверхностей второго порядка.
47.8 Классификация поверхностей второго порядка.
Подведём итог всем выводам из параграфа 47.
Итак, мы показали, что всякое уравнение второго порядка от трёх переменных (47.1) (с условием на коэффициенты (47.2)) может задавать в пространстве лишь одно из следующих 15 множеств:
-
эллипсоид
-однополостной гиперболоид Основные
-двуполостной гиперболоид поверхности
-эллиптический параболоид второго
-гиперболический параболоид порядка
-
эллиптический
цилиндр цилиндрические
поверхности
-гиперболический цилиндр второго порядка
-
параболический
цилиндр
-
конус
второго порядка
-
две
пересекающиеся плоскости
распадающаяся
-две параллельные плоскости поверхность
-
одна
плоскость
второго порядка
-
одна
прямая линия
-одна точка вырожденные
-пустое множества (мнимый эллипсоид поверхности
мнимый эллиптический цилиндр,
мнимые параллельные плоскости)
Читателю предлагается самостоятельно установить, что все выше перечисленные 15 множеств являются уникальными, т.е. для любой пары из вышеперечисленных множеств никакую поверхность из заданной пары нельзя перевести в другую поверхность из той же пары никаким линейным преобразованием координат. Для этого для заданной пары поверхностей (легко видеть, что только из основных поверхностей второго порядка можно составить 36 пар) надо найти линию второго порядка, которую можно получить в сечении плоскостями одной из поверхностей заданной пары, но нельзя получить в сечении плоскостью другой из поверхностей из этой пары. Впрочем, для распадающихся и вырожденных поверхностей второго порядка это достаточно очевидно, ибо всякое невырожденное линейное преобразование координат плоскость может перевести только
в плоскость, линии их пересечения – в линию их пересечения, прямую линию – в прямую линию, одну точку – в одну точку, а пустое множество – в пустое множество.