
Обозначение на схеме биполярного транзистора
|
|
|
|
Схемотехническое обозначение P-N-P транзистора, то есть транзистора прямой проводимости
|
А схемотехническое обозначение транзистора обратной проводимости или N-P-N транзистора |
Как не путаться в проводимостях транзистора и в их схемотехнических изображениях? Тут все просто. Как вы помните, в полупроводнике P-типа у нас очень много дырок, а дырки обладают положительным зарядом, то есть они со знаком «плюс».
Полупроводник N-типа содержит большое количество электронов, а электроны — это отрицательные частицы со знаком «минус». Как вы помните, электрический ток течет от «плюса» к «минусу». Стрелка эмиттера показывает направление движения электрического тока. То есть, если у нас база состоит из полупроводника P-типа, то значит ток течет от базы, следовательно, стрелка эмиттера направлена от базы, если же база из N-полупроводника, то стрелка эмиттера направлена в базу. Все просто как дважды два.
Существует три схемы подключения биполярных транзисторов:
С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.
Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.
При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.
Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.
При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.
Режимы работы биполярного транзистора
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
Барьерный режим. В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Параметры биполярных транзисторовДля оценки максимально допустимых режимов работы транзисторов используют основные параметры:
1) максимально допустимое напряжение коллектор–эмиттер (для различных транзисторов Uкэ макс = 10 - 2000 В),
2) максимально допустимая мощность рассеяния коллектора Pк макс – по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 - 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством – радиатором,
3) максимально допустимый ток коллектора Iк макс – до 100 А и более,
4) граничная частота передачи тока fгр по ней биполярные транзисторы делят:
на низкочастотные – до 3 МГц,
среднечастотные – от 3 до 30 МГц,
высокочастотные – от 30 до 300 МГц,
сверхвысокочастотные – более 300 МГц.
Полевой транзистор
Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:
Транзисторы с управляющим p-n переходом (рис. 6).
С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
МДП, со структурой: металл-диэлектрик-проводник.
Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.
Детали очень чувствительны к статическому электричеству.
Схемы полевых триодов показано на рисунке 5.
Рис. 6. Фото реального полевого триода
Обратите внимание на название электродов: сток, исток и затвор.
Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.
Строение полевого транзистора отличается от биполярного тем, что ток в нём не пересекает зоны p-n перехода. Заряды движутся по регулируемому участку, называемому затвором. Пропускная способность затвора регулируется напряжением.
Пространство p-n зоны уменьшается или увеличивается под действием электрического поля (см. Рис. 9). Соответственно меняется количество свободных носителей зарядов – от полного разрушения до предельного насыщения. В результате такого воздействия на затвор, регулируется ток на электродах стока (контактах, выводящих обработанный ток). Входящий ток поступает через контакты истока.
По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.