
- •Биотехнология теория
- •1. Биотехнология как межотраслевая область научно-технического прогресса и раздел практических знаний, этапы ее развития.
- •2. Основные факторы, обусловившие развитие современной биотехнологии.
- •3. Связи биотехнологии с биологическими, химическими, техническими и другими науками.
- •4. Области применения достижении биотехнологии.
- •5. Микроорганизмы (бактерии и высшие протисты) - основные объекты биотехнологии.
- •8. Выделение и селекция микроорганизмов, продуцентов биологически активных веществ.
- •9. Принципиальные подходы к улучшению штаммов промышленных микроорганизмов.
- •10.Промышленные энзимы, продуцируемые микроорганизмами.
- •11. Различия микроорганизмов по типу питания и отношению к кислороду.
- •12. Клетки животных и растений как объекты биотехнологии.
- •13. Использование клеточных культур в биотехнологических процессах.
- •14. Трансгенные животные и растения как новые объекты биотехнологии.
- •15. Требования, предъявляемые к питательным субстратам, использующимся в биотехнологических процессах.
- •16. Природные сырьевые материалы растительного происхождения.
- •17. Отходы различных производств, как сырье для биотехнологических процессов.
- •18. Химические и нефтехимические субстраты, применяемые в качестве сырья для биотехнологии.
- •19. Преимущества и недостатки биотехнологических производств по сравнению с химическими технологиями.
- •20. Принципиальные схемы биотехнологических процессов, определяющие конструкции биореакторов (ферментеров).
- •21. Основные требования, предъявляемые к системам, используемым для процессов ферментации.
- •22. Типы и режимы ферментации. Периодические процессы.
- •23. Типы и режимы ферментации. Непрерывные процессы.
- •24. Проблемы аэрирования, пеногашения, асептики и стерильности при различных ферментациях.
- •25. Открытые и замкнутые ферментационные системы.
- •26. Хемостатные и турбидостатные режимы кулътивирования продуцентов.
- •27. Основные требования, предъявляемые к биореакторам.
- •28. Системы перемешивания, применяемые в современных ферментерах.
- •29. Принципы масштабирования технологических процессов: лабораторные, пилотные и промышленные ферментеры и решаемые с их использованием задачи.
- •30. Специализированные ферментационные технологии: анаэробные, твердофазные и газофазные процессы.
- •31. Особенности культивирования клеток животных, виды культур.
- •32. Особенности культивирования клеток растений.
- •33. Конечные стадии получения продуктов биотехнологических процессов.
- •34. Отделение биомассы: флотация, фильтрование и центрифугирование.
- •35. Методы дезинтеграции клеток: физические, химические и энзиматические.
- •36. Выделение целевого продукта: осаждение, экстрагирование, адсорбция, электрохимические методы, ионообменная хроматография.
- •37. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов.
- •38. Биотехнология производства «одноклеточного» белка.
- •39. Продуценты «одноклеточного» белка: дрожжи и бактерии.
- •40. Продуценты «одноклеточного» белка: водоросли и грибы.
- •41. Требования, предъявляемые к микробному белку и возможности его использования.
- •42. Сырьевая база производства белка одноклеточных организмов; высокоэнергетические субстраты, отходы сельского хозяйства и других производств.
- •43. Область применения энзимов в биотехнологических производствах.
- •44. Преимущества и недостатки энзимных технологий.
- •45. Технология производства энзимов для промышленных целей.
- •46. Требования, предъявляемые к продуцентам энзимов.
- •47. Иммобилизованные энзимы и преимущества их применения в биотехнологии.
- •48. Носители, используемые для иммобилизации энзимов: природные и синтетические органические носители.
- •49. Типы неорганических носителей.
- •50. Способы иммобилизации энзимов: адсорбция, включение в гели и полупроницаемые мембраны; химические методы иммобилизации ферментов.
- •51. Иммобилизованные клетки в биотехнологии
- •52. Получение рекомбинантных белков с помощью прокариотических систем.
- •53. Классификация питательных сред и требования к их составу.
- •54. Использование достижений биотехнологии в охране окружающей среды.
- •56. Получение и использование трансгенных растений для повышения продукции сельского хозяйства и качества продуктов питания.
- •57. Способы идентификации трансгенной днк.
- •58. Возможные риски использования генетически модифицированных организмов (гмо) для здоровья человека и окружающей среды.
- •59. Достижения молекулярной биотехнологии в генотерапии.
- •60. Биотехнология очистки промышленных отходов.
- •61. Биотехнологические способы получения энергоносителей.
- •62. Исследования генома человека и его результаты.
- •63. Получение рекомбинантных белков с помощью эукариотических систем.
- •64. Основные принципы получения трансгенных организмов.
44. Преимущества и недостатки энзимных технологий.
Ответ. Преимущества: каталитическая активность ферментов высокоспецифична и ограничивается одним типом реакций, так что не происходит побочных реакций; ферменты могут сразу атаковывать исходную молекулу и осуществлять превращение, для которого потребовалось бы несколько вспомогательных многоступенчатых химических синтезов; химические преобразования вещества упрощаются — одна или две ступени вместо многоступенчатого синтеза; ферментативные реакции могут протекать с большой скоростью в мягких условиях. Недостатки: для получения чистого продукта нужен и чистый фермент, а его выделение очень дорого; в выходящем из реактора продукте сохраняется фермент, который продолжает действовать; дорогостоящий фермент используется только однократно; свободный фермент быстро инактивируется (т.е. разрушается); в отличие от биомассы, которая самовоспроизводится в процессе непрерывной ферментации, фермент в непрерывном процессе нужно все время вводить, так как он вымывается с продуктом реакции.
45. Технология производства энзимов для промышленных целей.
Ответ. Несмотря на то что многие весьма полезные и ценные ферменты продуцируются клетками животных и растений, все же предполагается, что большая часть промышленных разработок в области ферментной технологии будет основываться на ферментах, получаемых из микроорганизмов. Даже в солодовом процессе при пивоварении, где используется амилаза, получаемая из проростков ячменя, относительно недорогая, и на основании которой строится повсеместное приготовление пива, по-видимому, не выдержит конкуренции с все увеличивающимся внедрением в эти процессы бактериальных ферментов аналогичного действия. Поскольку микробные ферменты являются малообъемными препаратами относительно невысокой стоимости, методы, применяемые для их производства, обычно осуществляются с использованием биореакторов (ферментеров), аналогичных по конструкции и функциях таковым, которые применяются при производстве антибиотиков. Выбор культуральной среды является весьма важным моментом в процессе производства, так как она обеспечивает растущий микроорганизм энергией, а также является источником необходимых элементов (углерода, азота и т. д.). В большинстве случаев ферменты получаются при ферментации с одноразовой загрузкой, длящейся от 30 до 150 часов; процессы, основанные на непрерывном (проточном) культивировании, нашли пока еще малое применение в промышленном производстве ферментов. В процессе выращивания продуцентов ферментов, последние могут накапливаться внутри клеток или же секретироваться во внешнюю среду. Коммерческие препараты ферментов могут выпускаться в продажу либо в жидкой, либо в кристаллической форме; очищенными или же в виде "грубых" препаратов. Например, в препаратах, используемых для гидролиза крахмала, целлюлозы, основным критерием является высокая активность основного фермента в препарате, а наличие других активностей зачастую не принимают во внимание. В то же время в препаратах ферментов, используемых в молекулярной биологии, медицине, основным критерием качества является отсутствие дополнительных ферментативных активностей и просто белковых загрязнений. Концентрирование и очистка ферментов зачастую представляет собой весьма сложные процессы. И естественно, что стоимость препаратов ферментов зависит от всех перечисленных выше моментов.