
- •1. Биотехнология как межотраслевая область научно-технического прогресса и раздел практических знаний
- •2. Этапы развития биотехнологии
- •3. Основные факторы, обусловившие развитие современной биотехнологии
- •4. Связи биотехнологии с биологическими, химическими, техническими и другими науками
- •5. Практические задачи биотехнологии и важнейшие, исторические этапы ее развития (вторая часть – это вопрос 2)
- •6. Области применения достижений биотехнологии
- •7. Микроорганизмы (бактерии и высшие протисты) – основные объекты биотехнологии
- •8. Преимущества микроорганизмов перед другими объектами в решении современных биотехнологических задач
- •9. Принципы подбора биотехнологических объектов: модельные и базовые микроорганизмы, штаммы микроорганизмов, использующиеся в биотехнологии
- •10. Выделения и селекция микроорганизмов, продуцентов биологически активных веществ
- •11. Принципиальные подходы к улучшению штаммов промышленных микроорганизмов
- •12. Промышленные энзимы, продуцируемые микроорганизмами
- •13. Клетки животных и растений как объекты биотехнологии
- •14. Использование клеточных культур в биотехнологических процессах
- •15.Трансгенные животные и растения как новые объекты биотехнологии
- •16. Требования, предъявляемые к питательным субстратам, использующимся в биотехнологических процессах
- •17.Природные сырьевые материалы растительного происхождения
- •18. Отходы различных производств, как сырьё для биотехнологических процессов
- •19.Химические и нефтехимические субстраты, применяемые в качестве сырья для биотехнологии
- •20. Преимущества и недостатки биотехнологических производств по сравнению с химическими технологиями
- •21. Принципиальные схемы биотехнологических процессов, определяющие конструкции биореакторов(ферментёров)
- •22. Основные требования, предъявляемые к системам, используемым для процессов ферментации
- •23. Типы и режимы ферментации: периодические и непрерывные процессы
- •24. Проблемы аэрирования, пеногашения , асептики и стерильности при различных ферментациях
- •25. Открытые и замкнутые ферментационные системы
- •26. Хемостатные и турбидостатные режимы культивирования продуцентов
- •27. Основные требования, предъявляемые к биореакторам
- •28. Системы перемешивания, применяемые в современных ферментах
- •29. Принципы масштабирования технологических процессов: лабораторные, пилотные и промышленные ферментеры и решаемые с их использованием задачи
- •30. Специализированные ферментационные технологии: анаэробные, твердофазные и газофазные процессы
- •31.Особенности культивирования клеток животных и растений
- •32. Конечные стадии получения продуктов биотехнологических процессов
- •33. Отделение биомассы: флотация, фильтрование и центрифугирование
- •34. Методы дезинтеграции клеток: физические, химические и энзиматические
- •35. Выделение целевого продукта: осаждение, экстрагирование, адсорбция, электрохимические методы, ионообменная хроматография
- •36. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов
- •37. Биотехнология производства «одноклеточного» белка
- •38. Продуценты «одноклеточного» белка
- •39. Требования, предъявляемые к микробному белку и возможности его использования
- •40. Сырьевая база производства белка одноклеточных организмов; высокоэнергетические субстраты, отходы сельского хозяйства и других производств
- •41.Область применения энзимов в биотехнологических процессах
- •42. Преимущества и недостатки энзимных технологий
- •43.Технология производства энзимов для промышленных целей
- •44. Требования, предъявляемые к продуцентам
- •45.Иммобилизованные энзимы и преимущества их применение в биотехнологии
- •46. Носители, используемые для иммобилизации энзимов природные и синтетические органические носители
- •47. Типы неорганических носителей
- •48. Способы иммобилизации энзимов: адсорбция, включение в гели и полупроницаемые мембраны; химические методы иммобилизации ферментов
- •49. Иммобилизованные клетки в биотехнологии
- •50. Получение рекомбинантных белков с помощью прокариотических систем
- •51.Особенности производства белков продуктов медицинского назначения
- •52.Использование достижений биотехнологии в сельском хозяйстве и охране окружающей среды
- •53. Получение и использование трансгенных растений для повышения продукции сельского хозяйства и качества продуктов питания
- •54. Получение трансгенных животных для продукции белков медицинского назначения
- •55. Возможные риски использования генетически модифицированных организмов (гмо) для здоровья человека и окружающей среды
- •56. Достижения молекулярной биотехнологии в генотерапии
- •57. Биотехнология очистки промышленных отходов
- •58. Биотехнологические способы получения энергоносителей
- •59. Исследования генома человека и его результаты
- •60. Получение рекомбинантных белков с помощью эукариотических систем
41.Область применения энзимов в биотехнологических процессах
С давних пор в таких процессах, как пивоварение, изготовление хлеба и производство сыра, использовалась деятельность ферментов. 1896 г. считается достоверным началом современной микробной ферментной технологии с получением первого коммерческого продукта новой отрасли – такадиастазы, представляющей собой грубую (неочищенную) смесь гидролитического фермента, приготавливаемую путем выращивания гриба Aspergillus oryzae на отрубях ячменя. Быстрое развитие ферментной технологии началось с середины 50-х годов на основе использования грибных (микробных) ферментов. Причиной этого главным образом явилось следующее: 1) Интенсивное развитие практики глубинного культивирования микроорганизмов, связанных с производством антибиотиков, что, в свою очередь, потребовало новых знаний и привело к быстрому внедрению появляющихся разработок в производство. 2) Быстрое развитие основных знаний о свойствах ферментов, обусловливающее реализацию их потенциала для целей промышленного катализа. Свободные от клеток ферменты имеют в настоящее время широкое применение во многих химических процессах, в которых участвует большое количество последовательных реакций. Однако ферментные процессы, в которых используются в качестве катализаторов микробные клетки, характеризуются довольно большим числом ограничений: 1. Большая часть субстрата в обычных условиях превращается в микробную биомассу. 2. Наличие (или возможное появление) побочных реакций, приводящих к накоплению значительных количеств отходов. 3. Условия для роста микроорганизма могут быть иными, нежели для образования и накопления необходимого продукта. 4. Выделение и очистка необходимого продукта из культуральной жидкости могут быть сопряжены со значительными трудностями. Многие (если не все) из этих перечисленных недостатков могут быть существенно уменьшены путем использования чистых ферментов и, по-видимому, при дальнейших совершенствованиях методов применения ферментов они будут практически решены. В таких случаях культуральная (ферментационная) жидкость, получаемая при выращивании микроорганизмов (например, дрожжей или мицелиальных грибов, бактерий), является основным источником протеаз, амилаз и в несколько меньшей степени целлюлаз, липаз и других гидролитических ферментов. Многие промышленные ферменты, являясь гидролазами, могут функционировать без дополнительных сложных кофакторов; они легко выделяются (сепарируются от биомассы) без разрушения клеточных стенок продуцентов и хорошо растворимы в воде. Но поскольку большинство ферментов микроорганизмов по своей природе являются внутриклеточными, то наибольший прогресс в биотехнологии может ожидаться именно при их использовании для промышленных целей. реди многих новых областей и возможностей ферментной технологии существенное место отводится утилизации лигноцеллюлозы (или просто древесных материалов). Это "обильное" (с избытком имеющееся в природе) сырье должно использоваться человеком, и многие исследовательские разработки направлены на создание эффективных способов деструкции данного сложного органического соединения.