
- •1. Биотехнология как межотраслевая область научно-технического прогресса и раздел практических знаний
- •2. Этапы развития биотехнологии
- •3. Основные факторы, обусловившие развитие современной биотехнологии
- •4. Связи биотехнологии с биологическими, химическими, техническими и другими науками
- •5. Практические задачи биотехнологии и важнейшие, исторические этапы ее развития (вторая часть – это вопрос 2)
- •6. Области применения достижений биотехнологии
- •7. Микроорганизмы (бактерии и высшие протисты) – основные объекты биотехнологии
- •8. Преимущества микроорганизмов перед другими объектами в решении современных биотехнологических задач
- •9. Принципы подбора биотехнологических объектов: модельные и базовые микроорганизмы, штаммы микроорганизмов, использующиеся в биотехнологии
- •10. Выделения и селекция микроорганизмов, продуцентов биологически активных веществ
- •11. Принципиальные подходы к улучшению штаммов промышленных микроорганизмов
- •12. Промышленные энзимы, продуцируемые микроорганизмами
- •13. Клетки животных и растений как объекты биотехнологии
- •14. Использование клеточных культур в биотехнологических процессах
- •15.Трансгенные животные и растения как новые объекты биотехнологии
- •16. Требования, предъявляемые к питательным субстратам, использующимся в биотехнологических процессах
- •17.Природные сырьевые материалы растительного происхождения
- •18. Отходы различных производств, как сырьё для биотехнологических процессов
- •19.Химические и нефтехимические субстраты, применяемые в качестве сырья для биотехнологии
- •20. Преимущества и недостатки биотехнологических производств по сравнению с химическими технологиями
- •21. Принципиальные схемы биотехнологических процессов, определяющие конструкции биореакторов(ферментёров)
- •22. Основные требования, предъявляемые к системам, используемым для процессов ферментации
- •23. Типы и режимы ферментации: периодические и непрерывные процессы
- •24. Проблемы аэрирования, пеногашения , асептики и стерильности при различных ферментациях
- •25. Открытые и замкнутые ферментационные системы
- •26. Хемостатные и турбидостатные режимы культивирования продуцентов
- •27. Основные требования, предъявляемые к биореакторам
- •28. Системы перемешивания, применяемые в современных ферментах
- •29. Принципы масштабирования технологических процессов: лабораторные, пилотные и промышленные ферментеры и решаемые с их использованием задачи
- •30. Специализированные ферментационные технологии: анаэробные, твердофазные и газофазные процессы
- •31.Особенности культивирования клеток животных и растений
- •32. Конечные стадии получения продуктов биотехнологических процессов
- •33. Отделение биомассы: флотация, фильтрование и центрифугирование
- •34. Методы дезинтеграции клеток: физические, химические и энзиматические
- •35. Выделение целевого продукта: осаждение, экстрагирование, адсорбция, электрохимические методы, ионообменная хроматография
- •36. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов
- •37. Биотехнология производства «одноклеточного» белка
- •38. Продуценты «одноклеточного» белка
- •39. Требования, предъявляемые к микробному белку и возможности его использования
- •40. Сырьевая база производства белка одноклеточных организмов; высокоэнергетические субстраты, отходы сельского хозяйства и других производств
- •41.Область применения энзимов в биотехнологических процессах
- •42. Преимущества и недостатки энзимных технологий
- •43.Технология производства энзимов для промышленных целей
- •44. Требования, предъявляемые к продуцентам
- •45.Иммобилизованные энзимы и преимущества их применение в биотехнологии
- •46. Носители, используемые для иммобилизации энзимов природные и синтетические органические носители
- •47. Типы неорганических носителей
- •48. Способы иммобилизации энзимов: адсорбция, включение в гели и полупроницаемые мембраны; химические методы иммобилизации ферментов
- •49. Иммобилизованные клетки в биотехнологии
- •50. Получение рекомбинантных белков с помощью прокариотических систем
- •51.Особенности производства белков продуктов медицинского назначения
- •52.Использование достижений биотехнологии в сельском хозяйстве и охране окружающей среды
- •53. Получение и использование трансгенных растений для повышения продукции сельского хозяйства и качества продуктов питания
- •54. Получение трансгенных животных для продукции белков медицинского назначения
- •55. Возможные риски использования генетически модифицированных организмов (гмо) для здоровья человека и окружающей среды
- •56. Достижения молекулярной биотехнологии в генотерапии
- •57. Биотехнология очистки промышленных отходов
- •58. Биотехнологические способы получения энергоносителей
- •59. Исследования генома человека и его результаты
- •60. Получение рекомбинантных белков с помощью эукариотических систем
35. Выделение целевого продукта: осаждение, экстрагирование, адсорбция, электрохимические методы, ионообменная хроматография
Выделение целевого продукта микробиологического биосинтеза – это завершающая стадия биотехнологического процесса. При этом продукты биосинтеза могут, как накапливаться в клетках продуцентов, так и выделяться в культуральную жидкость. После разрушения клеток выделение целевого продукта из раствора осуществляется методами, общими для внеклеточных и внутриклеточных продуктов:
Осаждение – выделение целевого продукта путем добавления к жидкости реагента, взаимодействующего с растворенным продуктом и переводящим его в твердую фазу. Осаждение проводят физическими (нагревание, охлаждение, разбавление или концентрирование раствора) или химическими методами. Так, пенициллин переводят в кристаллический осадок в присутствии соединений калия или натрия. Белки осаждают добавлением сульфата аммония, органических растворителей (этанола, ацетона).
Экстракция– переход целевого продукта из водной формы в несмешивающуюся с водой органическую жидкость (экстрагент). Наиболее распространено выделение жироподобных веществ жидкими углеводородами (типа бензина), но применяются и многие другие виды экстрагентов (хлороформ, эфир, бутилацетат). Экстракция прямо из твердой фазы (в том числе и биомассы микроорганизмов) называется экстрагированием. Частным случаем является холодовая экстракция (криоэкстракция), когда предполагается выделение продуктов из замороженных образцов, в этом случае используются растворители с низкой температурой кипения, которые при комнатной температуре переходят в газообразное состояние. Криоэкстракция часто используется в комбинации с криоконсервацией клеток.
Адсорбция– перевод растворенного в жидкости продукта в твердую фазу путем его осаждения (сорбции) на специальных твердых носителях (сорбентах). Хорошим адсорбентом является древесный уголь, глины с развитой пористой поверхностью. Путем адсорбции выделяют антибиотики и витамины.
Хроматография – процесс, напоминающий адсорбцию. На твердом сорбенте собираются растворенные вещества, но не одно, а несколько, часто близких по структуре. Например, смеси белков, нуклеотидов, сахаров, антибиотиков. При адсорбции они и отделяются от сорбента вместе, а при хроматографии они выходят из сорбента по очереди, что позволяет их разделять и, значит, очищать друг от друга.
36. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов
Концентрирование продукта
Методы концентрирования 1)обратного осмоса (концентрируемый раствор помещается в мешок из полупроницаемой мембраны, снаружи создается осмотическое давление, превышающее осмотическое давление раствора, в результате чего растворитель начинает вытекать через мембранупротив градиента концентрации растворенного вещества, обусловливая дальнейшее концентрирование раствора)
2)ультрафильтрация (концентрирование вещества с помощью мембранных фильтров. Технология ультрафильтрации привлекает своей простотой, относительной экономичностью и щадящим обращением с продуктом, поскольку осуществляется при умеренно низком внешнем давлении. Кроме того, в данном методе не требуется изменение рН. Поэтому метод перспективен при концентрировании малостабильных продуктов (некоторые аминокислоты, антибиотики и ферменты).
3) выпаривания (метод выпаривания наиболее древний и обладает существенным недостатком: для удаления растворителя концентрируемый раствор следует нагревать, для этого применяются вакуумные испарители, обеспечивающие более щадящий режим концентрирования. Нагревающим агентом обычно служит водяной пар, хотя используется также обогрев жидким теплоносителем или электрическими нагревателями. Выпаривающие аппараты бывают периодического и непрерывного действия с однократной и многократной циркуляцией кипящего раствора.
Обезвоживание продукта (сушка) Выбор методов сушки определяется физико-химическими и биологическими свойствами обезвоживаемого продукта, вязкости раствора или степени сохранности жизнеспособности, если дело имеют с живыми объектами.
1)обезвоживание в газообразных нагревающих агентах (пар, воздух, углекислый газ, дымовые газы) которые с высокой скоростью подаются в сушильный аппарат снизу, а частицы обезвоживаемого продукта парят в этом газовом потоке. Преимущество данного способа состоит в возможности регулировать интенсивность массо-тепло-обмена за счет изменения продолжительности пребывания препарата в воздушном потоке, а также возможность организации непрерывного процесса. Недостатком метода является прилипание продукта к стенкам сушильной камеры.
2)барабанные сушилки, в которых подогреваемые барабаны вращаются в сосудах с микробной взвесью. Соприкасаясь со стенками барабана, взвесь обезвоживается и биомасса присыхает к поверхности барабана. Засохшую биомассу удаляют специальными ножами.
3)вакуумные сушильные шкафы (для лабильных материалов) при пониженных давлениях и температурах.
4) распылительные сушильные аппараты, в которых обезвоживающиеся растворы или суспензии превращаются путем пропускания через форсунки (или вращающиеся диски) в аэрозоль, который подается в сушильную камеру с нагретым газом (110-150 0С). В таких сушилках выживаемость бактериальных культур достигает лишь 20-30%, что явно не удовлетворяет требуемому качеству препаратов.
5) лиофильные сушки (наиболее широко используются), особенно для высушивания лабильных белковых препаратов или препаратов медицинского назначения. Препараты предварительно замораживаются, и вода испаряется из замороженного состояния при высоком вакууме.
Модификация продуктов
Различного рода модификации необходимы в тех случаях, когда в результате процесса получается лишь "заготовка" целевого продукта. Так, например, пенициллин модифицируется до полусинтетических препаратов, поступающих для практического использования как коммерческие препараты. В некоторых случаях при биотехнологическом процессе продуцент образует какую-то определенную структуру, к которой уже химическим путем добавляется необходимый компонент.
Модификация является необходимым этапом при получении многих ферментов, гормонов и препаратов медицинского назначения. Соединения животного или растительного, а также микробного происхождения зачастую необходимо изменять таким образом, чтобы придать им требуемые для тех или иных целей качества. Например, у бычьего инсулина удаляются аминокислотные остатки, после чего он становится идентичным человеческому гормону.
Стабилизация продукта
Для сохранения требуемых свойств получаемых продуктов в процессе их хранения, реализации и использования потребителями применяют различного рода физико-химические воздействия с целью повышения его стабильности. Стабилизация ферментов также достигается добавлением к препаратам глицерина или углеводов, которые формируют многочисленные водородные связи с аминокислотными остатками, препятствуя тем самым их денатурированию при нагревании или спонтанной инактивации.
Пример: стабилизация пищевого продукта, получаемого из яичных желтков -меланжа, свойства которого при хранении существенно изменяются, что делает его непригодным к использованию. Однако порчу меланжа можно предотвратить, если удалить из него углеводы посредством выращивания на меланже пропионовокислых бактерий. Бактерии "выедают" углеводы, повышают питательную ценность продукта за счет обогащения органическими кислотами и витаминами В, а также значительно удлиняют сроки хранения меланжа.