
- •1. Биотехнология как межотраслевая область научно-технического прогресса и раздел практических знаний
- •2. Этапы развития биотехнологии
- •3. Основные факторы, обусловившие развитие современной биотехнологии
- •4. Связи биотехнологии с биологическими, химическими, техническими и другими науками
- •5. Практические задачи биотехнологии и важнейшие, исторические этапы ее развития (вторая часть – это вопрос 2)
- •6. Области применения достижений биотехнологии
- •7. Микроорганизмы (бактерии и высшие протисты) – основные объекты биотехнологии
- •8. Преимущества микроорганизмов перед другими объектами в решении современных биотехнологических задач
- •9. Принципы подбора биотехнологических объектов: модельные и базовые микроорганизмы, штаммы микроорганизмов, использующиеся в биотехнологии
- •10. Выделения и селекция микроорганизмов, продуцентов биологически активных веществ
- •11. Принципиальные подходы к улучшению штаммов промышленных микроорганизмов
- •12. Промышленные энзимы, продуцируемые микроорганизмами
- •13. Клетки животных и растений как объекты биотехнологии
- •14. Использование клеточных культур в биотехнологических процессах
- •15.Трансгенные животные и растения как новые объекты биотехнологии
- •16. Требования, предъявляемые к питательным субстратам, использующимся в биотехнологических процессах
- •17.Природные сырьевые материалы растительного происхождения
- •18. Отходы различных производств, как сырьё для биотехнологических процессов
- •19.Химические и нефтехимические субстраты, применяемые в качестве сырья для биотехнологии
- •20. Преимущества и недостатки биотехнологических производств по сравнению с химическими технологиями
- •21. Принципиальные схемы биотехнологических процессов, определяющие конструкции биореакторов(ферментёров)
- •22. Основные требования, предъявляемые к системам, используемым для процессов ферментации
- •23. Типы и режимы ферментации: периодические и непрерывные процессы
- •24. Проблемы аэрирования, пеногашения , асептики и стерильности при различных ферментациях
- •25. Открытые и замкнутые ферментационные системы
- •26. Хемостатные и турбидостатные режимы культивирования продуцентов
- •27. Основные требования, предъявляемые к биореакторам
- •28. Системы перемешивания, применяемые в современных ферментах
- •29. Принципы масштабирования технологических процессов: лабораторные, пилотные и промышленные ферментеры и решаемые с их использованием задачи
- •30. Специализированные ферментационные технологии: анаэробные, твердофазные и газофазные процессы
- •31.Особенности культивирования клеток животных и растений
- •32. Конечные стадии получения продуктов биотехнологических процессов
- •33. Отделение биомассы: флотация, фильтрование и центрифугирование
- •34. Методы дезинтеграции клеток: физические, химические и энзиматические
- •35. Выделение целевого продукта: осаждение, экстрагирование, адсорбция, электрохимические методы, ионообменная хроматография
- •36. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов
- •37. Биотехнология производства «одноклеточного» белка
- •38. Продуценты «одноклеточного» белка
- •39. Требования, предъявляемые к микробному белку и возможности его использования
- •40. Сырьевая база производства белка одноклеточных организмов; высокоэнергетические субстраты, отходы сельского хозяйства и других производств
- •41.Область применения энзимов в биотехнологических процессах
- •42. Преимущества и недостатки энзимных технологий
- •43.Технология производства энзимов для промышленных целей
- •44. Требования, предъявляемые к продуцентам
- •45.Иммобилизованные энзимы и преимущества их применение в биотехнологии
- •46. Носители, используемые для иммобилизации энзимов природные и синтетические органические носители
- •47. Типы неорганических носителей
- •48. Способы иммобилизации энзимов: адсорбция, включение в гели и полупроницаемые мембраны; химические методы иммобилизации ферментов
- •49. Иммобилизованные клетки в биотехнологии
- •50. Получение рекомбинантных белков с помощью прокариотических систем
- •51.Особенности производства белков продуктов медицинского назначения
- •52.Использование достижений биотехнологии в сельском хозяйстве и охране окружающей среды
- •53. Получение и использование трансгенных растений для повышения продукции сельского хозяйства и качества продуктов питания
- •54. Получение трансгенных животных для продукции белков медицинского назначения
- •55. Возможные риски использования генетически модифицированных организмов (гмо) для здоровья человека и окружающей среды
- •56. Достижения молекулярной биотехнологии в генотерапии
- •57. Биотехнология очистки промышленных отходов
- •58. Биотехнологические способы получения энергоносителей
- •59. Исследования генома человека и его результаты
- •60. Получение рекомбинантных белков с помощью эукариотических систем
32. Конечные стадии получения продуктов биотехнологических процессов
Существует 5 стадий биотехнологического производства.
Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента - главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.
Третья стадия - стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.
На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.
Заключительная стадия биотехнологического производства - приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры.
33. Отделение биомассы: флотация, фильтрование и центрифугирование
Разделение культуральной жидкости и биомассы - сепарация. Это 1-ый этап очистки целевого продукта.
Виды сепарации:
1. Флотация. Если клетки продуцента в биореакторе из-за низкой смачиваемости накапливаются в поверхностных слоях жидкости, то жидкость предварительно вспенивают, затем отделяют ее верхний слой с клетками. Флотаторы различных конструкций сцеживают, откачивают или соскребают пену, состоящую из пузырьков газа с прилипшими к ним клетками. Флотацию широко используют как первый этап отделения дрожжевой массы для осветления культуральной жидкости.
2. Фильтрация - задержание биомассы на пористой фильтрующей перегородке. Применяют фильтры однократного или многократно использования: барабанные, дисковые, ленточные, тарельчатые, карусельные, вакуум-фильтры, фильтр-прессы различных конструкций, мембранные фильтры. Диаметр пор может превышать размеры клеток. Иногда биомассу сдувают с поверхности фильтра сжатым воздухом или срезают специальным ножом.
3. Центрифугирование - осаждение взвешенных в жидкости частиц с применением центробежной силы. Требует более дорогостоящего оборудования, чем фильтрование. Поэтому оно оправдывает себя, если: а) суспензия фильтруется медленно; б) поставлена задача максимального освобождения культуральной жидкости от содержащихся частиц; в) необходимо наладить непрерывный процесс сепарации в условиях, когда фильтры рассчитаны только на периодическое действие.
Центрифугирование и фильтрация иногда реализуются в комбинации, в фильтрационных центрифугах. Перспективны для осаждения биомассы центрифуги-сеператоры, в которых биомасса оседает на стенках вращаемого цилиндра или на тарелках специальной тарельчатой вставки.