
- •1. Биотехнология как межотраслевая область научно-технического прогресса и раздел практических знаний
- •2. Этапы развития биотехнологии
- •3. Основные факторы, обусловившие развитие современной биотехнологии
- •4. Связи биотехнологии с биологическими, химическими, техническими и другими науками
- •5. Практические задачи биотехнологии и важнейшие, исторические этапы ее развития (вторая часть – это вопрос 2)
- •6. Области применения достижений биотехнологии
- •7. Микроорганизмы (бактерии и высшие протисты) – основные объекты биотехнологии
- •8. Преимущества микроорганизмов перед другими объектами в решении современных биотехнологических задач
- •9. Принципы подбора биотехнологических объектов: модельные и базовые микроорганизмы, штаммы микроорганизмов, использующиеся в биотехнологии
- •10. Выделения и селекция микроорганизмов, продуцентов биологически активных веществ
- •11. Принципиальные подходы к улучшению штаммов промышленных микроорганизмов
- •12. Промышленные энзимы, продуцируемые микроорганизмами
- •13. Клетки животных и растений как объекты биотехнологии
- •14. Использование клеточных культур в биотехнологических процессах
- •15.Трансгенные животные и растения как новые объекты биотехнологии
- •16. Требования, предъявляемые к питательным субстратам, использующимся в биотехнологических процессах
- •17.Природные сырьевые материалы растительного происхождения
- •18. Отходы различных производств, как сырьё для биотехнологических процессов
- •19.Химические и нефтехимические субстраты, применяемые в качестве сырья для биотехнологии
- •20. Преимущества и недостатки биотехнологических производств по сравнению с химическими технологиями
- •21. Принципиальные схемы биотехнологических процессов, определяющие конструкции биореакторов(ферментёров)
- •22. Основные требования, предъявляемые к системам, используемым для процессов ферментации
- •23. Типы и режимы ферментации: периодические и непрерывные процессы
- •24. Проблемы аэрирования, пеногашения , асептики и стерильности при различных ферментациях
- •25. Открытые и замкнутые ферментационные системы
- •26. Хемостатные и турбидостатные режимы культивирования продуцентов
- •27. Основные требования, предъявляемые к биореакторам
- •28. Системы перемешивания, применяемые в современных ферментах
- •29. Принципы масштабирования технологических процессов: лабораторные, пилотные и промышленные ферментеры и решаемые с их использованием задачи
- •30. Специализированные ферментационные технологии: анаэробные, твердофазные и газофазные процессы
- •31.Особенности культивирования клеток животных и растений
- •32. Конечные стадии получения продуктов биотехнологических процессов
- •33. Отделение биомассы: флотация, фильтрование и центрифугирование
- •34. Методы дезинтеграции клеток: физические, химические и энзиматические
- •35. Выделение целевого продукта: осаждение, экстрагирование, адсорбция, электрохимические методы, ионообменная хроматография
- •36. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов
- •37. Биотехнология производства «одноклеточного» белка
- •38. Продуценты «одноклеточного» белка
- •39. Требования, предъявляемые к микробному белку и возможности его использования
- •40. Сырьевая база производства белка одноклеточных организмов; высокоэнергетические субстраты, отходы сельского хозяйства и других производств
- •41.Область применения энзимов в биотехнологических процессах
- •42. Преимущества и недостатки энзимных технологий
- •43.Технология производства энзимов для промышленных целей
- •44. Требования, предъявляемые к продуцентам
- •45.Иммобилизованные энзимы и преимущества их применение в биотехнологии
- •46. Носители, используемые для иммобилизации энзимов природные и синтетические органические носители
- •47. Типы неорганических носителей
- •48. Способы иммобилизации энзимов: адсорбция, включение в гели и полупроницаемые мембраны; химические методы иммобилизации ферментов
- •49. Иммобилизованные клетки в биотехнологии
- •50. Получение рекомбинантных белков с помощью прокариотических систем
- •51.Особенности производства белков продуктов медицинского назначения
- •52.Использование достижений биотехнологии в сельском хозяйстве и охране окружающей среды
- •53. Получение и использование трансгенных растений для повышения продукции сельского хозяйства и качества продуктов питания
- •54. Получение трансгенных животных для продукции белков медицинского назначения
- •55. Возможные риски использования генетически модифицированных организмов (гмо) для здоровья человека и окружающей среды
- •56. Достижения молекулярной биотехнологии в генотерапии
- •57. Биотехнология очистки промышленных отходов
- •58. Биотехнологические способы получения энергоносителей
- •59. Исследования генома человека и его результаты
- •60. Получение рекомбинантных белков с помощью эукариотических систем
23. Типы и режимы ферментации: периодические и непрерывные процессы
Непрерывное культивирование в одном биореакторе называется одностадийным. Многостадийное выращивание предусматривает последовательное или каскадное расположение биореакторов, позволяющее обеспечивать внедрение принципа дифференцированных режимов в непрерывные биотехнологические процессы, основанные на создании системы биореакторов. При разработке новых биотехиологических процессов сначала прибегают к периодическому культивированию. На непрерывный режим пока еще переведено небольшое число процессов, однако перспективность его не вызывает сомнений, несмотря на более сложные конструкции аппаратов и систем контроля (иными словами, на более солидные капиталовложения). Конечно, и периодическое культивирование еще не исчерпало своих возможностей. Пока что выбор режима (периодическое или непрерывное культивирование) подчиняется (да и будет подчиняться в дальнейшем) соображениям экономической целесообразности. Хотя непрерывные процессы приобрели широкое практическое применение в лабораторных условиях (масштабах), лишь немногие из них используются в промышленности. Однако непрерывные процессы довольно широко практикуются в производстве одноклеточного белка; например, продукция ICI Prutin на метаноле и производство микопротеина компанией Rank Hovis McDougall. Несколько подробнее об особенностях вышеуказанных процессов. Периодическое культивирование включает: а) стерилизацию сред и всего оборудования; б) загрузку биореактора питательной средой; в) внесение посевного материала (клеток или спор); г) выращивание культуры (это может совпадать во времени с последующим этапом или предшествовать ему); д) синтез целевого продукта; е) отделение и очистку готового продукта. Все этапы представлены во временном аспекте; после окончания последнего этапа производится мойка биореактора и подготовка его к новому циклу.
В непрерывных процессах: загрузка и выгрузка среды-непрерывно.
Скорость подачи свежей среды равна скорости удаления объёма ферментационной жидкости. Объем жидкости в аппарате постоянен в течение длительного времени.
В непрерывных процессах клетки постоянно поддерживаются в экспоненциальной фазе роста( в геометрической прогрессии идёт процесс размножения клеток, клетки молодые).
Преимущества периодического культивирования: · Малая стоимость аппарата и систем управления · возможность нарабатывать в одном реакторе различные продукты · произвольность времени культивирование · меньше вероятность инфицирования и мутирования · удобство при получении малого количества продукта · возможность поддержание условий как в фазе роста биомассы , так и в фазе биосинтеза продукта · удобство при биосинтезе вторичных продуктов
Недостатки: · необходимость приготовления посевного материала · велико время ферментации · необходимость частой стерилизации · износ измерительных приборов · производимость по биомассе и продукту ниже чем при непрерывном процессе · трудность поддержания параметров из нестационарного процесса
Преимущества непрерывного культивирования: · неограниченное время роста биомассы · возможность поддержания постоянной концентрации биомассы · возможность длительного поддержания роста, лимитированного одним субстратом · состояние среды можно оптимизировать путем и иммунных добавок · удобство определение клеточных констант · большая надежность и воспроизводимость результата, большая производительность · малая продолжительность времени · облегченная автоматизация и механизация · постоянство качества продукции · отсутствие необходимости частой стерилизации · уменьшение контакта персонала с микроорганизмом · автоселекция микроорганизмов
Недостатки: · меньшая гибкость в регулировании процесса · большие требования к постоянству качества сырья · трудность дозирования нерастворимых твердых субстратов · большая опасность инфицирования · возможности вырождение культуры из-за длительности культивирования · сложность достижения оптимального выхода · повышенные требования к надежности оборудования · ложность культивирования мицелиальных культур из-за их вязкости и гетерогенности · пристеночные рост может вызвать выливания продукта из аппарата