
- •Цитология и гистология
- •1. Предмет и задачи цитологии, связь её с другими биологическими дисциплинами, значение для практики. История развития цитологии. Клеточная теория и ее современное состояние.
- •2. Методы цитологии: световая микроскопия, витальное изучение клеток, изучение фиксированных клеток, окрашивание, авторадиография.
- •3. Методы цитологии: электронная микроскопия, ультрамикротомия, контрастирование объектов, сканирующая электронная микроскопия.
- •5. Общий план строения эукариотической клетки под световым и под электронным микроскопами. Сравнение строения растительной и животной клеток.
- •6. Общий план строения прокариотической клетки. Сравнение строения клеток прокариот и эукариот.
- •7. Вирусы как неклеточная форма жизни.
- •8. Общая характеристика клетки. Химический состав, молекулярная организация и структура клеточных мембран.
- •9. Особенности строения цитоплазматической мембраны. Функции цитоплазматической мембраны и механизмы их осуществления. Механизмы транспорта веществ через мембраны.
- •10. Эндоплазматический ретикулум, его разновидности. Строение и функции эндоплазматического ретикулума, механизм функционирования. Рибосомы.
- •11. Аппарат Гольджи: строение и функции. Связь аппарат Гольджи с эндоплазматический ретикулум и плазматической мембраной.
- •12. Особенности молекулярной структуры плазмалеммы. Гликокаликс и другие структуры, связанные с плазмолеммой.
- •13. Хемоосмотическая теория п. Митчела.
- •14. Роль плазмалеммы в процессах фагоцитоза, пиноцитоза и специфического эндоцитоза, в межклеточных контактах и коммуникациях.
- •15. Химический состав цитоплазмы.
- •16. Взаимодействия мембранных структур клетки. Вакуоль. Гиалоплазма.
- •17. Химический состав и строение ядерного матрикса. Роль ядерного матрикса в поддержании размеров и формы ядра.
- •18. Днк хроматина. Строение и свойства молекул днк, их репликация. Фракции днк в составе хроматина, их характеристика и функциональное назначение.
- •19. Белки хроматина, их классификация. Укладка днк в составе интерфазного хроматина.
- •20. Ультраструктура митотических хромосом (уровни компактизации хроматина). Эу- и гетерохроматин.
- •21. Общая характеристика ядра. Основные структурные компоненты ядра. Функции ядра. Классификация хроматина.
- •22. Ядерная оболочка: строение, функции, связь с другими клеточными органеллами.
- •23. Химический состав и функции ядрышка. Компоненты активного ядрышка.
- •24. Лизосомы: строение, химическая организация, образование, функции. Разновидности лизосом и их роль в клетке.
- •25. Роль лизосом в фагоцитозе и некрозе клеток. Лизосомальный цикл.
- •26. Фагосомы, пиносомы и опушенные везикулы, их роль в эндоцитозе.
- •27. Митохондрии: морфологическая характеристика, локализация в клетке.
- •28. Размеры, форма и ультраструктура митохондрий в связи с выполняемыми функциями. Биогенез митохондрий, их происхождение и эволюция.
- •30. Структура и функции хлоропластов. Геном хлоропластов.
- •31. Стартовый и терминирующий кодоны. Этапы биосинтеза белка.
- •32. Химический состав и ультраструктура малой и большой субъединиц эукариотических рибосом. Белоксинтезирующая система.
- •33. Ламины. Поровые комплексы и их функции.
- •34. Веретено деления, его организация. Механизм расхождения хромосом при делении клетки.
- •35. Структура и ультраструктура центриолей. Функции центриолей и механизм их осуществления. Центриолярный цикл. Связь центриолей с ресничками и жгутиками.
- •36. Реснички и жгутики клеток эукариот: белковый состав, ультратонкая организация, формы и механизм движения, связь с центриолями.
- •37. Микрофиламенты: химический состав, строение. Цитоплазматические микрофиламенты. Амебоидное движение. Ультраструктура микроворсинок.
- •38. Микротрубочки, их химический состав, ультратонкая организация. Цитоплазматические микротрубочки.
- •39. Общая характеристика опорно-двигательной системы клетки. Промежуточные филаменты: химический состав, локализация, роль в клетке.
- •40. Актин и ассоциированные с ним белки. Молекулярные механизмы сокращения актиномиозиновых комплексов.
- •41. Ультраструктура диктиосом и их функции.
- •42. Включения.
- •43. Клеточный цикл. Фазы клеточного цикла, их характеристика.
- •44. Митоз как основной способ размножения соматических клеток. Стадии митоза, их характеристика. Типы митоза.
- •45. Мейоз, его биологическое значение. Типы мейоза. Стадии мейоза и их характеристика.
- •46. Конъюгация гомологичных хромосом. Синаптонемальный комплекс, бивалент.
- •47. Кроссинговер. Хромосомы типа «ламповых щеток»: строение, функциональное назначение, распространение.
- •48. Редукционное деление. Поведение хромосом в профазе I мейоза и её стадии.
- •49. Нетрадиционные типы клеточных делений: амитоз, эндомитоз.
- •50. Апоптоз как физиологическая гибель клеток. Морфологические признаки апоптоза.
- •51. Дифференцировка клеток и её механизмы. Старение клеток и злокачественный рост.
- •52. Предмет и методы гистологии, история ее развития. Ткань, структура ткани. Классификация тканей, их функции и происхождение.
- •53. Общая характеристика эпителиев (строение, функции, происхождение). Морфологическая, функциональная и генетическая классификация эпителиев.
- •54. Однослойные эпителии, их классификация и морфологическая характеристика в связи с расположением и выполняемыми функциями. Переходный эпителий.
- •55. Многослойный эпителий, его разновидности. Строение многослойного эпителия в связи с его расположением и выполняемыми функциями.
- •56. Экзоцитоз в бокаловидных клетках кишечника.
- •57. Гистогенез, физиологическая и репаративная регенерация эпителиев.
- •58. Железистый эпителий. Морфологическая и функциональная классификация желез. Типы секреции.
- •59. Особенности гистоструктуры желез внутренней и внешней секреции.
- •60. Морфологическая классификация желез внутренней секреции. Гистофизиология молочной, поджелудочной и щитовидной желез.
- •61. Кровь, ее состав и функциональное значение. Плазма крови. Эритроциты, тромбоциты: строение, функции, их осуществление.
- •62. Классификация форменных элементов крови. Формула крови и ее изменения при физиологических и патологических состояниях организма.
- •63. Лейкоциты, их разновидности. Строение различных типов лейкоцитов, их функции в организме. Лейкоцитарная формула, ее значение.
- •64. Гемопоэз. Лимфопоэз и миелопоэз. Кроветворение в эмбриональный период и во взрослом организме. Кроветворные органы.
- •65. Стволовая кроветворная клетка и кроветворный дифферон.
- •66. Топография зародышевых листков в курином эмбрионе и их производные.
- •67. Эритропоэз, гранулоцитопоэз, тромбоцитоэз и моноцитопоэз.
- •68. Закономерности дифференцировки т- и в-лимфоцитов.
- •69. Морфология и функции клеток рыхлой соединительной ткани, местонахождение в организме.
- •70. Плотная соединительная ткань, ее разновидности, микроскопическое строение, химический состав, физические свойства, местонахождение в организме, функции.
- •71. Гистогенез соединительной ткани, ее физиологическая и репаративная регенерация.
- •72. Гистогенез хрящевой и костной тканей. Развитие кости из мезенхимы и на месте хряща. Рост и регенерация хряща и кости.
- •73. Хрящевая ткань, ее разновидности. Строение и функции хрящевой ткани, местонахождение в организме. Гиалиновый хрящ.
- •74. Строение и функции сухожилий.
- •75. Общая характеристика мышечных тканей, их морфофункциональная и гистогенетическая классификация.
- •76. Строение и функции гладкомышечной клетки. Локализация гладкой мышечной ткани в организме.
- •77. Поперечнополосатая мышечная ткань позвоночных, ее микроскопическое строение, ультраструктура. Миофибрилла и саркомер. Молекулярный механизм мышечного сокращения.
- •78. Ультраструктура и системы миона. Красные и белые мионы.
- •79. Костная ткань, ее разновидности и функции. Строение, клеточный и химический состав, физические свойства. Остеон (гаверсова система).
- •80. Регенерация кости. Минерализация и возрастные изменения костной ткани.
- •81. Остеоциты, остеобласты и остеокласты. Химический состав и структура межклеточного вещества кости.
- •82. Гладкая мышечная ткань. Сердечная мышечная ткань. Их микроскопическое строение, отличия от поперечнополосатой мышечной ткани. Развитие и регенерация мышц.
- •83. Общая характеристика нервной ткани. Классификация клеток, входящих в ее состав. Строение нейронов, их разновидности.
- •84. Гистогенез и регенерация нервной ткани.
- •85. Классификация и строение рецепторных нервных окончаний.
- •86. Ультраструктура и классификация нейронов.
- •87. Клеточный состав нервной ткани. Морфология нейрона, аксон и дендрит.
- •88. Механизм синаптической передачи. Нейромедиаторы.
- •89. Нейроглия, её разновидности. Морфофункциональная характеристика различных типов нейроглии.
- •90. Отростки нервных клеток. Строение мякотных и безмякотных нервных волокон. Образование и ультраструктура миелиновых оболочек. Регенерация нервных волокон.
31. Стартовый и терминирующий кодоны. Этапы биосинтеза белка.
Ответ. Кодон (кодирующий тринуклеотид) — единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК или РНК, обычно кодирующих включение одной аминокислоты. Последовательность кодонов в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном. Поскольку существует 4 различных азотистых основания (аденин, гуанин, цитозин, тимин), а аминокислоты кодируются кодоном, состоящим из комбинаций трёх нуклеотидов, то общее число кодонов равно числу размещений с повторениями =64 комбинации, из которых 61 комбинация кодирует определённые аминокислоты, а 3 оставшихся кодона (UGA, UAG и UAA) сигнализируют об остановке трансляции полипептидной цепи и называются стоп-кодонами. Стартовым кодоном у эукариотических организмов является триплет AUG в мРНК, кодирующий метионин, с которого начинается образование полипептидной цепи в процессе трансляции. У некоторых прокариот стартовыми кодонами также являются GUG, AUU, CUG, UUG. Так как в процессе биосинтеза белка в полипептидную цепь участвует всего 20 аминокислот, то различные кодоны могут кодировать одинаковые аминокислоты, такие кодоны принято называть изоакцепторными кодонами. Биосинтез белка — это многостадийный процесс синтеза и созревания белков, протекающий в живых организмах. В биосинтезе белка выделяют два основных этапа: синтез полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК (трансляция), и посттрансляционные модификации полипептидной цепи. Процесс биосинтеза белка требует значительных затрат энергии. Последовательность процессов синтеза полипептидной цепи белковой молекулы: активация аминокислоты специфичным ферментом в присутствии АТФ с образованием аминоациладенилата → присоединение активированной аминокислоты к специфичной тРНК с высвобождением аденозинмонофосфата (АМФ) → связывание аминоацил-тРНК (тРНК, нагруженной аминокислотой) с рибосомами, включение аминокислоты в белок с высвобождением тРНК. Наиболее энергозатратным процессом при синтезе белка обычно считается трансляция.
32. Химический состав и ультраструктура малой и большой субъединиц эукариотических рибосом. Белоксинтезирующая система.
Ответ. Гранулярная структура данной ЭПС обусловлена наличием на её поверхности рибосом. Такие рибосомы называются мембраносвязанными; они осуществляют синтез белков, попадающих во внутреннее пространство ЭПС. Бывают также мембранонесвязанные, или свободные, рибосомы. Они синтезируют белки, которые либо остаются в гиалоплазме, либо переходят в состав тех или иных клеточных структур (ядра, митохондрий, цитоплазмы). Содержание таких рибосом особенно возрастает в быстро растущих клетках. Рибосома состоит из двух субъединиц - малой и большой. Каждая из них - это свёрнутый рибонуклеопротеидный тяж, содержащий несколько функциональных центров и небольшого количества низкомолекулярных компонентов. Соотношение РНК/белок в рибосомах составляет 1:1 у высших животных. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы. Структурно и функционально рибосома — это, прежде всего, её РНК. Рибосомная РНК (рРНК) в составе рибосомы очень компактна, имеет сложную третичную структуру и плотно инкрустирована молекулами различных рибосомных белков. Очищенные от белков высокомолекулярные рибосомные РНК в специально подобранных условиях самопроизвольно сворачиваются в компактные частицы. Рибосомная РНК малой субъединицы рибосомы обозначается как 16S-подобная рРНК. В большинстве случаев рРНК малой субъединицы представляет собой одну ковалентно непрерывную полирибонуклеотидную цепь. Для 16S-подобных рРНК эукариотических цитоплазматических рибосом. Митохондриальные рибосомы млекопитающих содержат относительно короткие 16S-подобные рРНК (10—12S), которые состоят из ~950 нуклеотидных остатков. Высокомолекулярная РНК, составляющая структурную основу большой субъединицы рибосомы, обозначается как 23S-подобная рРНК. 23S-подобная рРНК цитоплазматических рибосом эукариот состоит из двух прочно ассоциированных полирибонуклеотидных цепей — 28S и 5,8S рРНК. Кроме вышеуказанной 23S(-подобной) рРНК, большая субъединица обычно содержит также относительно низкомолекулярную РНК — так называемую 5S рРНК, она менее прочно ассоциирована с 23S(-подобной) рРНК, транскрибируется с отдельного гена и, таким образом, не может быть рассмотрена как отщеплённый фрагмент высокополимерной рРНК. 5S рРНК входит в состав большой субъединицы цитоплазматических рибосом всех прокариот и эукариот, не является непременной составляющей любой функциональной рибосомы, так как 5S рРНК отсутствуют в митохондриальных рибосомах млекопитающих (так называемых «минирибосомах»). Число нуклеотидных звеньев для образцов 23S-подобных рРНК из различных источников могут существенно различаться. Молекула 5,8S рРНК комплекса, характерного для цитоплазматических эукариотических рибосом, имеет длину около 160 нуклеотидных остатков. Длина 5S рРНК довольно консервативна и составляет 115—125 нуклеотидных остатков. Помимо рРНК, рибосома содержит также около 80 различных белков. Рибосома на 30—50 % состоит из белка. Кроме биополимеров (РНК и белков) в состав рибосом входят также некоторые низкомолекулярные компоненты. Это молекулы воды, ионы металлов (главным образом Mg2+ — до 2 % сухой массы рибосомы), ди- и полиамины — могут составлять до 2,5 % сухой массы рибосомы. Трансляция (биосинтез белков с использованием мРНК в качестве матрицы) осуществляется в клетках при помощи сложной белок-синтезирующей системы. Отдельные компоненты этой системы ассоциируют в единую структуру по мере ее функционирования и разобщаются по окончанию синтеза. В состав белок-синтезирующей системы входят следующие структуры: рибосомы; мРНК; тРНК; белковые факторы и ферменты инициации, элонгации и терминации трансляции; набор аминокислот; набор аминоацил-тРНК-синтетаз, образующих аминоацил-тРНК; макроэрги АТФ и ГТФ; ионы Mg 2+, Ca2+, K+, NH4+. Рибосомы представляют собой рибонуклеопротеиновые образования -- своеобразные "фабрики", на которых идёт сборка аминокислот в белки. Матричная РНК содержит информацию о структуре синтезируемого белка и используется в качестве матрицы. Транспортная РНК - к акцепторному концу этих молекул может быть присоединена определенная аминокислота, а с помощью антикодона они узнают специфический кодон на мРНК. В каждой стадии белкового синтеза на рибосоме: инициации, элонгации и терминации участвует разный набор внерибосомных белковый факторов: инициации; элонгации; терминации; другие. Эти белки связываются с рибосомой или её субъединицами на определённых стадиях процесса и стабилизируют или облегчают функционирование белоксинтезирующей машины. Все 20 аминокислот, входящих в структуру белков организма человека, должны присутствовать в достаточном количестве. Это требование прежде всего относится к незаменимым (т. е. не синтезирующимся в организме) аминокислотам, так как недостаточное снабжение клетки хотя бы одной незаменимой аминокислотой приводит к снижению, а иногда и полной остановке синтеза белка на кодоне, требующем включения этой аминокислоты в белок. Процесс узнавания и присоединения происходит в два этапа и катализируется ферментом - уникальным для каждой из 20 аминокислот, принадлежащим к классу аминоацил-тРНК-синтетаз. Этот фермент образует активированный промежуточный аминоацил-АМР-ферментативный коплекс, который специфически узнает соответствующую молекулу тРНК и переносит аминокислотный остаток на 3-OH группу концевого аденозина. АТФ и ГТФ как источники энергии.