- •Цитология и гистология
- •1. Предмет и задачи цитологии, связь её с другими биологическими дисциплинами, значение для практики. История развития цитологии. Клеточная теория и ее современное состояние.
- •2. Методы цитологии: световая микроскопия, витальное изучение клеток, изучение фиксированных клеток, окрашивание, авторадиография.
- •3. Методы цитологии: электронная микроскопия, ультрамикротомия, контрастирование объектов, сканирующая электронная микроскопия.
- •5. Общий план строения эукариотической клетки под световым и под электронным микроскопами. Сравнение строения растительной и животной клеток.
- •6. Общий план строения прокариотической клетки. Сравнение строения клеток прокариот и эукариот.
- •7. Вирусы как неклеточная форма жизни.
- •8. Общая характеристика клетки. Химический состав, молекулярная организация и структура клеточных мембран.
- •9. Особенности строения цитоплазматической мембраны. Функции цитоплазматической мембраны и механизмы их осуществления. Механизмы транспорта веществ через мембраны.
- •10. Эндоплазматический ретикулум, его разновидности. Строение и функции эндоплазматического ретикулума, механизм функционирования. Рибосомы.
- •11. Аппарат Гольджи: строение и функции. Связь аппарат Гольджи с эндоплазматический ретикулум и плазматической мембраной.
- •12. Особенности молекулярной структуры плазмалеммы. Гликокаликс и другие структуры, связанные с плазмолеммой.
- •13. Хемоосмотическая теория п. Митчела.
- •14. Роль плазмалеммы в процессах фагоцитоза, пиноцитоза и специфического эндоцитоза, в межклеточных контактах и коммуникациях.
- •15. Химический состав цитоплазмы.
- •16. Взаимодействия мембранных структур клетки. Вакуоль. Гиалоплазма.
- •17. Химический состав и строение ядерного матрикса. Роль ядерного матрикса в поддержании размеров и формы ядра.
- •18. Днк хроматина. Строение и свойства молекул днк, их репликация. Фракции днк в составе хроматина, их характеристика и функциональное назначение.
- •19. Белки хроматина, их классификация. Укладка днк в составе интерфазного хроматина.
- •20. Ультраструктура митотических хромосом (уровни компактизации хроматина). Эу- и гетерохроматин.
- •21. Общая характеристика ядра. Основные структурные компоненты ядра. Функции ядра. Классификация хроматина.
- •22. Ядерная оболочка: строение, функции, связь с другими клеточными органеллами.
- •23. Химический состав и функции ядрышка. Компоненты активного ядрышка.
- •24. Лизосомы: строение, химическая организация, образование, функции. Разновидности лизосом и их роль в клетке.
- •25. Роль лизосом в фагоцитозе и некрозе клеток. Лизосомальный цикл.
- •26. Фагосомы, пиносомы и опушенные везикулы, их роль в эндоцитозе.
- •27. Митохондрии: морфологическая характеристика, локализация в клетке.
- •28. Размеры, форма и ультраструктура митохондрий в связи с выполняемыми функциями. Биогенез митохондрий, их происхождение и эволюция.
- •30. Структура и функции хлоропластов. Геном хлоропластов.
- •31. Стартовый и терминирующий кодоны. Этапы биосинтеза белка.
- •32. Химический состав и ультраструктура малой и большой субъединиц эукариотических рибосом. Белоксинтезирующая система.
- •33. Ламины. Поровые комплексы и их функции.
- •34. Веретено деления, его организация. Механизм расхождения хромосом при делении клетки.
- •35. Структура и ультраструктура центриолей. Функции центриолей и механизм их осуществления. Центриолярный цикл. Связь центриолей с ресничками и жгутиками.
- •36. Реснички и жгутики клеток эукариот: белковый состав, ультратонкая организация, формы и механизм движения, связь с центриолями.
- •37. Микрофиламенты: химический состав, строение. Цитоплазматические микрофиламенты. Амебоидное движение. Ультраструктура микроворсинок.
- •38. Микротрубочки, их химический состав, ультратонкая организация. Цитоплазматические микротрубочки.
- •39. Общая характеристика опорно-двигательной системы клетки. Промежуточные филаменты: химический состав, локализация, роль в клетке.
- •40. Актин и ассоциированные с ним белки. Молекулярные механизмы сокращения актиномиозиновых комплексов.
- •41. Ультраструктура диктиосом и их функции.
- •42. Включения.
- •43. Клеточный цикл. Фазы клеточного цикла, их характеристика.
- •44. Митоз как основной способ размножения соматических клеток. Стадии митоза, их характеристика. Типы митоза.
- •45. Мейоз, его биологическое значение. Типы мейоза. Стадии мейоза и их характеристика.
- •46. Конъюгация гомологичных хромосом. Синаптонемальный комплекс, бивалент.
- •47. Кроссинговер. Хромосомы типа «ламповых щеток»: строение, функциональное назначение, распространение.
- •48. Редукционное деление. Поведение хромосом в профазе I мейоза и её стадии.
- •49. Нетрадиционные типы клеточных делений: амитоз, эндомитоз.
- •50. Апоптоз как физиологическая гибель клеток. Морфологические признаки апоптоза.
- •51. Дифференцировка клеток и её механизмы. Старение клеток и злокачественный рост.
- •52. Предмет и методы гистологии, история ее развития. Ткань, структура ткани. Классификация тканей, их функции и происхождение.
- •53. Общая характеристика эпителиев (строение, функции, происхождение). Морфологическая, функциональная и генетическая классификация эпителиев.
- •54. Однослойные эпителии, их классификация и морфологическая характеристика в связи с расположением и выполняемыми функциями. Переходный эпителий.
- •55. Многослойный эпителий, его разновидности. Строение многослойного эпителия в связи с его расположением и выполняемыми функциями.
- •56. Экзоцитоз в бокаловидных клетках кишечника.
- •57. Гистогенез, физиологическая и репаративная регенерация эпителиев.
- •58. Железистый эпителий. Морфологическая и функциональная классификация желез. Типы секреции.
- •59. Особенности гистоструктуры желез внутренней и внешней секреции.
- •60. Морфологическая классификация желез внутренней секреции. Гистофизиология молочной, поджелудочной и щитовидной желез.
- •61. Кровь, ее состав и функциональное значение. Плазма крови. Эритроциты, тромбоциты: строение, функции, их осуществление.
- •62. Классификация форменных элементов крови. Формула крови и ее изменения при физиологических и патологических состояниях организма.
- •63. Лейкоциты, их разновидности. Строение различных типов лейкоцитов, их функции в организме. Лейкоцитарная формула, ее значение.
- •64. Гемопоэз. Лимфопоэз и миелопоэз. Кроветворение в эмбриональный период и во взрослом организме. Кроветворные органы.
- •65. Стволовая кроветворная клетка и кроветворный дифферон.
- •66. Топография зародышевых листков в курином эмбрионе и их производные.
- •67. Эритропоэз, гранулоцитопоэз, тромбоцитоэз и моноцитопоэз.
- •68. Закономерности дифференцировки т- и в-лимфоцитов.
- •69. Морфология и функции клеток рыхлой соединительной ткани, местонахождение в организме.
- •70. Плотная соединительная ткань, ее разновидности, микроскопическое строение, химический состав, физические свойства, местонахождение в организме, функции.
- •71. Гистогенез соединительной ткани, ее физиологическая и репаративная регенерация.
- •72. Гистогенез хрящевой и костной тканей. Развитие кости из мезенхимы и на месте хряща. Рост и регенерация хряща и кости.
- •73. Хрящевая ткань, ее разновидности. Строение и функции хрящевой ткани, местонахождение в организме. Гиалиновый хрящ.
- •74. Строение и функции сухожилий.
- •75. Общая характеристика мышечных тканей, их морфофункциональная и гистогенетическая классификация.
- •76. Строение и функции гладкомышечной клетки. Локализация гладкой мышечной ткани в организме.
- •77. Поперечнополосатая мышечная ткань позвоночных, ее микроскопическое строение, ультраструктура. Миофибрилла и саркомер. Молекулярный механизм мышечного сокращения.
- •78. Ультраструктура и системы миона. Красные и белые мионы.
- •79. Костная ткань, ее разновидности и функции. Строение, клеточный и химический состав, физические свойства. Остеон (гаверсова система).
- •80. Регенерация кости. Минерализация и возрастные изменения костной ткани.
- •81. Остеоциты, остеобласты и остеокласты. Химический состав и структура межклеточного вещества кости.
- •82. Гладкая мышечная ткань. Сердечная мышечная ткань. Их микроскопическое строение, отличия от поперечнополосатой мышечной ткани. Развитие и регенерация мышц.
- •83. Общая характеристика нервной ткани. Классификация клеток, входящих в ее состав. Строение нейронов, их разновидности.
- •84. Гистогенез и регенерация нервной ткани.
- •85. Классификация и строение рецепторных нервных окончаний.
- •86. Ультраструктура и классификация нейронов.
- •87. Клеточный состав нервной ткани. Морфология нейрона, аксон и дендрит.
- •88. Механизм синаптической передачи. Нейромедиаторы.
- •89. Нейроглия, её разновидности. Морфофункциональная характеристика различных типов нейроглии.
- •90. Отростки нервных клеток. Строение мякотных и безмякотных нервных волокон. Образование и ультраструктура миелиновых оболочек. Регенерация нервных волокон.
17. Химический состав и строение ядерного матрикса. Роль ядерного матрикса в поддержании размеров и формы ядра.
Ответ. Ядерный матрикс выделяют, обработав изолированные клеточные ядра неионными детергентами в сочетании с обработкой 2М раствором NaCl, ДНКазой и РНК-азой. Он состоит из ламины, белкового скелета ядрышек и фибриллярно-гранулярной сети. Основной компонент ядерного матрикса представлен многочисленными гранулами диаметром 25-30 нм, которые соединяются между собой в фибриллярные структуры. В химическом отношении ядерный, матрикс практически полностью построен из белков. Наиболее изученные из них - это ламины А, В и С (молекулярная масса 65-70 кД). Ламины А и С имеют почти идентичную аминокислотную последовательность, но первый из них длиннее второго на 82 остатка. Центральные α-спиральные домены этих белков обладают большим сходством первичной структуры с гомологичными доменами кератинов и других белков промежуточных филаментов цитоплазмы. В физиологическом растворе ламины А и С образуют фибриллы диаметром 10 нм. Ламин В существенно отличается от ламинов А и С не только первичной структурой, но и более прочной связью с нуклеолеммой, входя в состав поровых комплексов. В отличие от белков промежуточных филаментов цитоплазмы ламины образуют не фибриллы, а трехмерные сети с ортогональной укладкой молекул. Функции ламинов заключаются в поддержании размеров и формы клеточного ядра, а также его перестройке при делении клетки или гибели ее путем апоптоза. В частности, циклин-зависимые киназы клеточного деления фосфорилируют ламины А и С, что вызывает обратимую дезинтеграцию нуклеолеммы. При апоптозе ламины атакуются специфическими протеазами - каспазами, необратимо разрушающими ядерный матрикс. Помимо ламинов, в состав ядерного матрикса входит еще не менее пяти групп белков с молекулярной массой от 10 до 200 кД. Некоторые из них обеспечивают прикрепление ДНК к ядерному матриксу (белки MAR – matrix attachment regions). Представления о кариолимфе (нуклеоплазме, ядерном соке) возникли еще в то время, когда о химическом составе ядра почти ничего не было известно. Позднее ее рассматривали как содержащийся в ядре коллоидный раствор белка, который не окрашивается применяемыми в световой микроскопии основными или кислыми красителями и слабо контрастируется на электронно-микроскопических препаратах. Тем не менее, понятие о кариолимфе сохранилось до сих пор для обозначения растворимой фракции клеточного ядра. Подразумевается, что в нее входят вода, а также растворенные в ней ионы натрия, калия, хлора, магния и кальция, низкомолекулярные ДНК и РНК, ферменты, метаболиты транскрипции и репликации, транспортные и другие молекулы.
18. Днк хроматина. Строение и свойства молекул днк, их репликация. Фракции днк в составе хроматина, их характеристика и функциональное назначение.
Ответ. На основании биохимических исследований и расчётов установлены следующие характеристики ядерной ДНК: в ядре любой соматической клетки содержится 46 молекул ДНК разной длины - по одной молекуле в каждой из 46 хромосом. Средняя длина одной молекулы - 4 см (120.000.000 нуклеотидных пар); всех вместе (в 1 ядре) - около 2 м. Общая масса всей этой ДНК (в 1 ядре) - 5,7 пг (5,7x10-12 г), во всех клетках организма человека - около 200 г. Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков. С химической точки зрения ДНК — длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии. В целом структура молекулы ДНК получила традиционное, но ошибочное название «двойной спирали», на самом же деле она является «двойным винтом». В ДНК встречается четыре вида азотистых оснований (аденин (A), гуанин (G), тимин (T) и цитозин (C)). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин (A) соединяется только с тимином (T), гуанин (G) — только с цитозином (C). Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Ширина двойной спирали составляет 2,2—2,4 нм, длина каждого нуклеотида (0,33 нм). Репликация (от лат. replicatio — возобновление) — процесс создания двух дочерних молекул ДНК на основе родительской молекулы ДНК. Репликацию ДНК осуществляет сложный комплекс, состоящий из 15—20 различных белков-ферментов, называемый реплисомой. С помощью специальных ферментов двойная спираль материнской ДНК расплетается на две нити, на каждой образовавшейся нити достраивается вторая нить, образуя две идентичных дочерних молекулы ДНК, которые затем скручиваются в отдельные спирали. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. При наблюдении живых или фиксированных клеток внутри ядра выявляются зоны плотного вещества, которые хорошо воспринимают разные красители, особенно основные. Благодаря такой способности хорошо окрашиваться этот компонент ядра и получил название "хроматин". Такими же свойствами обладают и хромосомы, которые отчетливо видны как плотные окрашивающиеся тельца во время митотического деления клеток. В неделящихся (интерфазных) клетках хроматин, выявляемый в световом микроскопе, может более или менее равномерно заполнять объем ядра или же располагаться отдельными глыбками. В состав хроматина входит ДНК в комплексе с белками. Хроматин интерфазных ядер представляет собой хромосомы, которые, однако, теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной. Зоны полной деконденсации хромосом и их участков морфологи называют эухроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина, иногда называемого гетерохроматином. Степень деконденсации хромосомного материала — хроматина в интерфазе может отражать функциональную нагрузку этой структуры. Чем "диффузнее" распределен хроматин в интерфазном ядре, тем интенсивнее в нем синтетические процессы. Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец — хромосом. В этот период хромосомы не выполняют никаких синтетических функций, в них не происходит включения предшественников ДНК и РНК. Таким образом, хромосомы клеток могут находиться в двух структурно-функциональных состояниях: в активном, рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном, в состоянии метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки. В хромосомах существует множество мест независимой репликации, т. е. удвоения ДНК — репликонов. ДНК эукариотических хромосом представляют собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. В составе генома человека должно встречаться более 50 000 репликонов, участков ДНК, которые синтезируются как независимые единицы.
