Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
159
Добавлен:
17.08.2022
Размер:
7.01 Mб
Скачать

Билет 5

1. Стадии и схема катаболизма

Катаболизм- ферментативное расщепление сравнительно крупных органических молекул окислительным путем, сопровождаемое высвобождением энергии и ее запасанием в виде молекул АТФ

(экзергонический процесс)

Анаболизм и катаболизм неразрывно связаны между собой: анаболизм поставляет катаболизму вещество, катаболизм поставляет анаболизму энергию. Однако в условиях постоянной температуры передача энергии в виде тепла от одного химического процесса другому невозможна. Поэтому в живых системах имеет место передача энергии посредством особых макроэргических соединений, обладающих значительным запасом энергии. Универсальным макроэргическим соединением во всех клетках служит аденозинтрифосфорная кислота (аденозинтрифосфат, АТФ).

Аналогия между горением и катаболизмом весьма условна. В обоих случаях мы имеем химическое превращение (окисление) органических веществ в СО2 и Н2О в присутствии кислорода. Однако горение – процесс молниеносный, нерегулируемый и неэффективный (вся энергия рассеивается в виде тепла). Напротив, при катаболизме энергия органических веществ выделяется порциями на различных его этапах, достаточно эффективно запасается при синтезе АТФ, а процесс регулируется потребностью клетки в энергии.

Известно два способа синтеза АТФ: аэробный (окислительное фосфорилирование) и анаэробный (субстратное фофорилирование). Анаэробный катаболизм представляет собой неполное окисление органических веществ, характерен только для углеводов (гликолиз), сопровождается образованием молочной кислоты и малым энергетическим выходом – 2 молекулы АТФ на 1 молекулу глюкозы. В физиологических условиях анаэробный катаболизм дает не более 10 % всей АТФ в клетке. Исключением 31 из этого общего правила являются скелетные мышцы: в белых мышечных волокнах основное количество АТФ синтезируется анаэробным путем. Кроме того, гликолиз становится единственно возможным путем продукции АТФ в любой клетке при дефиците кислорода – гипоксии. Однако анаэробный катаболизм в большинстве случаев не способен длительно поддерживать жизнедеятельность клеток. Так, хорошо известно, что самые чувствительные к гипоксии клетки – нейроны коры больших полушарий головного мозга – могут прожить без кислорода не более 5 мин. Большинство клеток получают свыше 90 % необходимой АТФ за счет аэробного катаболизма. Это высокоэффективный биохимический процесс полного окисления органических веществ (углеводов, липидов и белков) до неорганических соединений СО2 и Н2О в присутствии кислорода. Аэробное окисление 1 молекулы глюкозы дает возможность синтезировать 38 молекул АТФ, похожие значения дает окисление аминокислот, а полное окисление липидов поставляет клетке сотни молекул АТФ на 1 молекулу вещества. Большинство клеток могут использовать все три класса питательных веществ как источник энергии. Тем не менее, в их использовании наблюдается очередность: углеводы служат первым энергетическим «топливом», при исчерпании запасов которых клетки переходят на катаболизм липидов. Белки подвергаются катаболизму в последнюю очередь, в экстремальных ситуациях, например, при длительном голодании. Весь синтезируемый фонд АТФ клетки расходуют на совершение различных видов полезной работы. Во-первых, это химическая работа – реакции анаболизма, по определению требующие затраты АТФ.

Сюда относятся все биосинтезы в клетках, в особенности самые «дорогостоящие» – синтезы биополимеров (белков, ДНК и РНК, полисахаридов) и липидов. Во-вторых, это механическая работа – процессы перемещения клеток и их органелл в пространстве, в том числе и мышечное сокращение. Наконец, это осмотическая работа – процессы активного транспорта веществ через биологические мембраны, направленные на создание разности концентраций этих веществ внутри клетки и во внеклеточной жидкости. Если в роли таких веществ выступают зараженные частицы – ионы К+ , Na+ , Ca2+, Cl– , то формируется не только разность концентраций, но и разность потенциалов. В этом случае говорят о совершении электрической работы. Однако следует помнить, что КПД всех этих видов работы существенно ниже 100 %. Оставшаяся доля энергии АТФ переходит в тепло. В этом заключается еще одна важная функция всех процессов распада АТФ – функция теплопродукции.

Важно! Катаболизм. Расщепление основных пищевых веществ в клетке представляет собой ряд последовательных ферментативных реакций, составляющих 3 основные стадиикатаболизма (Ганс Кребс) – диссимиляция.

  1. стадия – крупные органические молекулы распадаются на составляющие их специфические структурные блоки. Так, полисахариды расщепляются до гексоз или пентоз, белки – до аминокислот, нуклеиновые кислоты – до нуклеотидов и нуклеозидов, липиды – до жирных кислот, глицеридов и др. веществ.

Количество энергии, освобождающееся на этом этапе, невелико – менее 1%.

  1. стадия – формируются ещё более простые молекулы, причём число их типов существенно уменьшается. Важно подчеркнуть, что здесь образуются продукты, которые являются общими для обмена разных веществ – это, как бы узлы, соединяющие разные пути метаболизма. К ним относятся: пируват – образуется при распаде углеводов, липидов, аминокислот; ацетил-КоА – объединяет катаболизм жирных кислот, углеводов, аминокислот.

Продукты, полученные на 2-й стадии катаболизма, вступают в 3-ю стадию, которая известна как цикл Кребса – цикл трикарбоновых кислот (ЦТК), в котором идут процессы терминального окисления. В ходе этой стадии все продукты окисляются до СО2 и Н2О. Практически вся энергия освобождается во 2-й и 3-ей стадиях катаболизма.

Все перечисленные выше стадии катаболизма или диссимиляции, которые известны как «схема Кребса» как нельзя более точно отражает важнейшие принципы метаболизма: конвергенцию и

унификацию.Конвергенция – объединение различных метаболических процессов, характерных для отдельных видов веществ в единые, общие для всех видов. Следующий этап – унификация – постепенное уменьшение числа участников обменных процессов и использование в метаболических реакциях универсальных продуктов обмена.

На первом этапе четко прослеживается принцип унификации: вместо множества сложных молекул самого различного происхождения образуются достаточно простые соединения в количестве 2-3 десятков. Эти реакции происходят в желудочно-кишечном тракте и не сопровождаются выделением большого количества энергии. Она обычно рассеивается в виде тепла и не используется для других целей. Значение химических реакций первого этапа состоит в подготовке питательных веществ к действительному освобождению энергии.

На втором этапе четко прослеживается принцип конвергенции: слияние различных метаболических путей в единое русло – то есть в 3-й этап.

На 2-ом этапе освобождается около 30% энергии, содержащейся в питательных веществах. Остальные 60-70% энергии освобождается в цикле трикарбоновых кислот и связанного с ним процесса терминального окисления. В системе терминального окисления или дыхательной цепи, основу которого составляет окислительное фосфорилирование, унификация достигает своей вершины. Дегидрогеназы, катализирующие окисление органических веществ в ЦТК, передают на дыхательную цепь только водород, который в процессе окислительного фосфорилирования претерпевает одинаковые превращения.

2. Стадии свободно-радикального окисления липидов.

Процессы свободнорадикального окисления (СРО) занимают центральное место в метаболизме клетки. Они служат источником энергии, необходимой для жизнедеятельности клетки и всего организма в целом. Эти процессы «готовят» пластический материал для создания и обновления клеточных структур, принимают непосредственное участие в реакциях, связанных с метаболизмом углеводов, липидов, белков.

Стадии перекисного окисления липидов

1) Инициация: образование свободного радикала (L•)

L → L•

Инициирует реакцию чаще всего гидроксильный радикал, отнимающий водород от СН2-групп полиеновой кислоты, что приводит к образованию липидного радикала.

2) Развитие цепи:

L • + О2 → LOO • LOO• + LH → LOOH + LR•

Развитие цепи происходит при присоединении О2, в результате чего образуется липопе-роксирадикал LOO• или пероксид липида LOOH.

ПОЛ представляет собой свободнорадикальные цепные реакции, т.е. каждый образовавшийся радикал инициирует образование нескольких других.

3) Разрушение структуры липидов

Конечные продукты перекисного окисления полиеновых кислот - малоновый диальдегид и гидропероксид кислоты.

4) Обрыв цепи - взаимодействие радикалов между собой:

LOO• + L• → LOOH + LH L• + vit E → LH + vit E• vit E• + L• → LH + vit Еокисл.

Развитие цепи может останавливаться при взаимодействии свободных радикалов между собой или при взаимодействии с различными антиоксидантами, например, витамином Е, который отдаёт электроны, превращаясь при этом в стабильную окисленную форму.

3. Роль нейраминидазы и гемаглютининов в вирусной репликации.

4. Задача: У людей, длительно употребляющих алкоголь, снижается эффективность некоторых лекарств, в том числе средств для наркоза. Как объяснить это явление?

У них повышена активность ферментов микросомальной системы, в связи с этим, при приёме ряда препаратов нет ожидаемого эффекта, т.к. они быстро окисляются и выводятся из организма.

Соседние файлы в папке Экзамен Биохимия