Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
19
Добавлен:
06.08.2022
Размер:
357.38 Кб
Скачать

9

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной, если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х.

Плотностью вероятности f(x) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [ab]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [ab], равна определённому интегралу от её плотности вероятности в пределах от a до b:

или

.

При этом общая формула функции F(x) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f(x):

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох, графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b.

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f(x) и ось Ох) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

,

а за пределами существования распределения её значение равно нулю

Плотность распределения f(x), как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f(x) непрерывной случайной величины в некотором конечном интервале [ab] принимает постоянное значение C, а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным.

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным.

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f(x) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F(x) - парабола:

График функции f(x) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

.

Характеристики равномерного распределения

Характеристики равномерного распределения:

  • среднее значение (математическое ожидание) ;

  • дисперсия ;

  • стандартное отклонение ;

  • равномерное распределение не имеет моды.

Решение примеров на равномерное распределение

Пример 1. Наблюдения показали, что вес ящика, предназначенного для транспортировки овощей, является равномерно распределённой случайной величиной в интервале от 985 г. до 1025 г. Случайно выбран один ящик. Найти характеристики равномерно распределённой случаной величины при условиях, которые будут указаны в решении.

Решение. Найдём вероятность того, что вес данного ящика будет в интервале от 995 г. до 1005 г. :

.

Найдём среднее значение непрерывной случайной величины:

.

Найдём стандартное отклонение:

.

Определим, у скольки процентов ящиков вес находится на удалении одного стандартного отклонения от среднего значения (т. е. в интервале ):

.

Пример 2. Поезда метрополитена идут регулярно с интервалом 2 (мин.). Пассажир выходит на платформу в случайный момент времени, никак не связанный с расписанием поездов. Случайная величина T - время, в течение которого ему придётся ждать поезда, имеет равномерное распределение. Найти плотность распределения f(x) случайной величины T, её математическое ожидание, дисперсию и стандартное отклонение. Найти вероятность того, что ждать придётся не больше полминуты.

Решение. Найдём плотность распределения f(x):

f(x) = 1/2 (0 < x < 2).

Найдём математическое ожидание случайной величины:

μ = (2 + 0)/2 = 1.

Найдём дисперсию:

σ² = 2²/12 = 1/3.

Стандартное отклонение:

σ = (√3)/3.

Найдём вероятность того, что пассажиру придётся ждать поезда не больше полминуты:

P{T < 1/2} = 1/4.

Пример 3. Случайная величина X распределена равномерно на участке (ab). Найти вероятность того, что в результате опыта она отклонится от своего математического ожидания больше, чем на 3σ.

Решение. Найдём стандартное отклонение:

σ = (b - a)/(2√3);

3σ = 3(b - a)/(2√3) = √3(b - a)/2;

При равномерном распределении на участке (ab) крайние точки a и b, ограничивающие участок возможных значений случайной величины, отстоят от её математического ожидания μ = (a + b)/2 на расстояние (b - a)/2, которое меньше, чем √3(b - a)/2. Следовательно, вероятность события, обозначенного в условии задачи, равна нулю.

Соседние файлы в папке Практика (удаленка)