[1]R. B. Ash. Real Analysis and Probability. Academic Press, New York, 1972.
[2]E. Asplund and L. Bungart. A First Course in Integration. Holt,Rinehart and Winston, New York, 1966.
[3]P. Billingsley. Ergodic Theory and Information. Wiley, New York, 1965.
[4]A. G. Bose and K. N. Stevens. Introductory Network Theory. Harper & Row, New York, 1965.
[5]R. Bracewell. The Fourier Transform and Its Applications. McGrawHill, New York, 1965.
[6]L. Breiman. Probability. Addison-Wesley, Menlo Park, CA, 1968.
[7]C. T. Chen. Introduction to Linear System Theory. Holt, Rinehart and Winston, New York, 1970.
[8]K. L. Chung. Markov Chains with Stationary Transition Probabilities. Springer-Verlag, New York, 1967.
[9]K. L. Chung. A Course in Probability Theory. Academic Press, New York, 1974.
[10]H. Cram´er and M. R. Leadbetter. Stationary and Related Stochastic Processes. Wiley, New York, 1967.
[11]J. L. Doob. Stochastic Processes. Wiley, New York, 1953.
[12]A. W. Drake. Fundamentals of Applied Probability Theory. McGrawHill, San Francisco, 1967.
[13]L. E. Dubins and L. J. Savage. Inequalities for Stochastic Processes: How to Gamble If You Must. Dover, New York, 1976.
435
436
BIBLIOGRAPHY
[14]E. B. Dynkin. Markov Processes. Springer-Verlag, New York, 1965.
[15]W. Feller. An Introduction to Probability Theory and its Applications, volume 2. Wiley, New York, 1960. 3rd ed.
[16]T. Fine. Properties of an optimal digital system and applications.
IEEE Trans. Inform. Theory, 10:287–296, Oct 1964.
[17]R. Gagliardi. Introduction to Communications Engineering. Wiley, New York, 1978.
[18]I. I. Gikhman and A. V. Skorokhod. Introduction to the Theory of Random Processes. Saunders, Philadelphia, 1965.
[19]B. V. Gnedenko. The Theory of Probability. Chelsea, New York, 1963. Translated from the Russian by B. D. Seckler.
[20]B. V. Gnedenko and A. Ya. Khinchine. An Elementary Introduction to the Theory of Probability. Dover, New York, 1962. Translated from the 5th Russian edition by L. F. Boron.
[21]R. M. Gray. Toeplitz and circulent matrices: II. ISL technical report no. 6504–1, Stanford University Information Systems Laboratory, April 1977. (Available by anonymous ftp to isl.stanford.edu in the directory tt pub/gray/reports/toeplitz or via the World Wide Web at http://www-isl.stanford.edu/~gray/compression.html. ).
[22]R. M. Gray. Probability, Random Processes, and Ergodic Properties. Springer-Verlag, New York, 1988.
[23]R. M. Gray and J. G. Goodman. Fourier Transforms. Kluwer Academic Publishers, Boston, Mass., 1995.
[24]R. M. Gray and J. C. Kie er. Asymptotically mean stationary measures. Ann. Probab., 8:962–973, 1980.
[25]U. Grenander and M. Rosenblatt. Statistical Analysis of Stationary Time Series. Wiley, New York, 1957.
[26]U. Grenander and G. Szego. Toeplitz Forms and Their Applications. University of California Press, Berkeley and Los Angeles, 1958.
[27]P. R. Halmos. Measure Theory. Van Nostrand Reinhold, New York, 1950.
[28]P. R. Halmos. Lectures on Ergodic Theory. Chelsea, New York, 1956.
[55]N. Wiener. The Fourier Integral and Certain of Its Applications. Cambridge University Press, New York, 1933.
[56]N. Wiener. Time Series: Extrapolation,Interpolation,and Smoothing of Stationary Time Series with Engineering Applications. M. I. T. Press, Cambridge, MA, 1966.
[57]N. Wiener and R.E.A.C. Paley. Fourier Transforms in the Complex Domain. Am. Math. Soc. Coll. Pub., Providence, RI, 1934.
[58]E. Wong. Introduction to Random Processes. Springer-Verlag, New York, 1983.
[59]A. M. Yaglom. An Introduction to the Theory of Stationary Random Functions. Prentice-Hall, Englewood Cli s, NJ, 1962. Translated by R. A. Silverman.
Index
Φ function, 64 δ response, 102
a.m.s., 431 abstract space, 389 additive
finite, 42 additivity, 18, 42
countable, 43 finite, 18
a ne, 226 algebra, 24 alphabet, 104
continuous, 116 discrete, 116 mixed, 116
amplitude continuous, 116 discrete, 116
area, 11
ARMA random process, 348 asymptotically mean stationary, 431 asymptotically uncorrelated, 256,