Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теормех / Лекции по кинематике.doc
Скачиваний:
19
Добавлен:
30.06.2022
Размер:
5.93 Mб
Скачать
  1. Поступательное движение твердого тела и его свойства.

Поступательным называется такое движение тела, при котором любая прямая, соединяющая две произвольные точки тела, перемещается, оставаясь параллельной своему начальному направлению.

Поступательное движение может быть как прямолинейным, так и криволинейным (рис.2.16).

Рис. 2.16. Примеры поступательного движения твердого тела

Докажем следующие свойства поступательного движения. Если тело движется поступательно, то все его точки в каждый момент времени имеют одинаковые скорости и ускорения, а траектории всех точек при наложении совпадают.

Пусть тело движется поступательно. Тогда (см. рис.2.17) для любых двух его точек А и В, в любой момент времени справедливо следующее векторное выражение:

,

где вектор по определению поступательного движения не изменяется ни по величине, ни по направлению. Это означает, что траектории точек А и В смещены относительно друг друга на постоянный вектор и, следовательно, при наложении совпадут.

Рис. 2.17. К определению свойств поступательного движения

Дифференцируя вышеприведенное векторное выражение по времени, получаем:

, или

так как последняя производная (как производная от постоянного вектора ) равна нулю. Дифференцируя равенство скоростей, получаем равенство ускорений:

.

Доказанные свойства позволяют свести изучение поступательного движения тела к изучению движения любой одной из его точек методами кинематики точки.

  1. Вращательное движение твердого тела

Движение твердого тела, при котором все точки, лежащие на некоторой прямой, принадлежащей телу или неизменно с ним связанной, остаются неподвижными в рассматриваемой системе отсчета, называется вращательным движением. Упомянутая выше прямая называется осью вращения.

Рис. 2.18. Вращение тела вокруг неподвижной оси

Очевидно, что все точки тела, не лежащие на оси вращения, будут двигаться по окружностям, плоскости которых перпендикулярны оси вращения, а центры лежат на этой оси.

Положение тела при вращательном движении можно однозначно определить углом между неподвижной полуплоскостью I и подвижной, вращающейся вместе с телом, полуплоскостью II, проходящими через ось вращения. Положительным направлением отсчета угла называемого также угловой координатой, принято считать вращение против хода часовой стрелки, если смотреть навстречу оси вращения z . Сам угол  принято измерять в радианах.

Для однозначного определения положения тела в любой момент времени, необходимо располагать зависимостью угловой координаты  от времени:

= (t) . (2.25)

Уравнение (2.25) называется уравнением или законом вращательного движения твердого тела.

Введем основные кинематические характеристики вращательного движения - угловую скорость и угловое ускорение . Пусть за промежуток времени t тело повернется на угол. Тогда отношение t называют средней угловой скоростью за этот промежуток времени: ср = t . Предел данного отношения при стремлении t к нулю, называют мгновенной или просто угловой скоростью:

. (2.26)

Аналогичным образом вводится понятие углового ускорения:

. (2.27)

Согласно (2.26) и (2.27) угловая скорость и угловое ускорение измеряются в радианах в секунду (рад/с) и в радианах в секунду за секунду (рад2) соответственно. Так как радиан является безразмерной величиной, допустимы и более компактные обозначения - -1) и -2).

Для того, чтобы использовать угловую скорость и угловое ускорение в векторных выражениях, необходимо рассматривать угловую скорость как вектор, с модулем равным d/dt и направленным вдоль оси вращения в ту сторону, откуда вращения тела видно происходящим против хода часовой стрелки. Вектор углового ускорения, модуль которого равен d/dt, также считают направленным вдоль оси вращения. Он совпадает по направлению с вектором угловой скорости при ускоренном вращении и противоположен ему при замедленном вращении тела (рис. 2.19). Необходимо отметить, что введенные таким необычным способом векторы называют псевдовекторами ( как бы векторами), чтобы подчеркнуть их некоторую “векторную неполноценность”. Тем не менее теперь становится возможна запись следующей векторной формулы:

, (2.28)

правильно отражающей не только количественную связь и , но и взаимосвязь направлений векторов и , отображенной на рисунке 2.19.

Рис. 2.19. Взаимосвязь направлений ц и e

Перейдем теперь к определению индивидуальных кинематических характеристик точек вращающегося тела по известному закону вращательного движения . Для этого рассмотрим движение любой точки М, не лежащей на оси вращения. Пусть за время dt тело повернется на угол dа точка М переместится по дуге окружности радиуса R на расстояние dS (рис. 2.20).

Рис. 2.20. Связь угловой скорости тела с линейными скоростями его точек

Тогда ее скорость будет равна , т.е. (2.29)

Так как всех точки тела вращаются с одной и той же угловой скоростью, то из (2.29) следует, что линейные скорости точек тела пропорциональны их расстояниям от оси вращения. Для определения ускорений воспользуемся формулами (2.19) и (2.20):

, (2.30)

. (2.31)

Полное ускорение точки М будет равно (рис. 2.21) геометрической сумме и :

или . (2.32)

Рис. 2.21. Ускорение точек тела при вращательном движении

Соседние файлы в папке теормех