Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

01 POWER ISLAND / 01 CCPP / V. Ganapathy-Industrial Boilers and HRSG-Design (2003)

.pdf
Скачиваний:
38
Добавлен:
23.06.2022
Размер:
3.75 Mб
Скачать

Figure 8.7 Chart of convective heat transfer coefficient and pressure drop versus fin geometry. (Data from Ref. 10)

8.19b

Q:

Describe Briggs and Young’s correlation.

A:

Charts and equations provided by the manufacturer of finned tubes can be used to obtain hc. In the absence of such data, the following equation of Briggs and Young for circular or helical finned tubes in staggered arrangement [4] can be used.

 

h d

 

 

Gd

 

0:681

 

mC

 

0:33 S

0:2

 

S

0:113

12k ¼ 0:134

12m

 

 

k

h

 

b

ð62Þ

 

c

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

Simplifying, we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G0:681

 

 

k0:67Cp0:33

 

 

S0:313

 

hc ¼ 0:295

 

 

 

 

 

 

 

 

 

ð63Þ

d0:319

 

m0:351

 

h0:2b0:113

Copyright © 2003 Marcel Dekker, Inc.

where

 

 

 

 

G ¼ gas mass velocity

 

 

 

 

¼

Wg

½Eq: ð39Þ&

NwLðST =12 AoÞ

 

S ¼ fin clearance ¼ 1=n b; in

[Eq. (42)]

d; h; b ¼ tube outer diameter, height, and thickness, in.

 

 

 

d

nbd

Ao ¼ fin obstruction area ¼

 

þ

 

; ft2=ft ½Eq: ð40Þ&

12

6

The gas properties Cp; m, and k are evaluated at the average gas temperature. The gas heat transfer coefficient hc has to be corrected for the temperature

distribution along the fin height by the fin efficiency

E ¼

 

 

 

 

 

1

 

 

 

ð64Þ

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

mh

 

2

d þ 2h

 

 

þ

 

 

 

 

 

 

r

 

 

 

 

3

 

 

 

 

 

 

 

12

 

 

d

 

where

 

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

m ¼

 

24hc

½Eq: ð47Þ&

 

 

Kmb

 

Km is the fin metal thermal conductivity, in Btu=ft h F.

In order to correct for the effect of finned area, a term called fin effectiveness is used. This term, Z, is given by

Z ¼ 1 ð1 EÞ

Af

 

½Eq: 43&

 

At

 

where the finned area Af

and total area At are given by

 

 

 

pn

 

2

 

 

 

½Eq: ð44Þ&

Af ¼

 

 

ð4dh

þ 4h

 

þ 2bd þ 4bhÞ

 

24

 

At ¼

Af þ

pd

ð1 nbÞ

½Eq: ð45Þ&

 

12

 

 

n is the fin density in fins=in. The factor

 

 

k0:67C0:33

 

 

 

 

 

 

F ¼

 

 

 

 

p

 

 

 

 

 

ð65Þ

 

 

m0:35

 

 

 

 

 

is given in Table 8.12.

The overall heat transfer coefficient with finned tubes, U, can be estimated as U ¼ 0:85Zhc, neglecting the effect of the non-luminous heat transfer coefficient.

Copyright © 2003 Marcel Dekker, Inc.

TABLE 8.12

Factor F for

Finned Tubes

 

 

 

Temp ( F)

F

200

0.0978

400

0.1250

600

0.1340

800

0.1439

1000

0.1473

1200

0.1540

1600

0.1650

 

 

Example

Determine the gas-side heat transfer coefficient when 150,000 lb=h of flue gases at an average temperature of 900 F flow over helically finned economizer tubes with the following parameters:

d ¼ tube outer diameter ¼ 2.0 in. n ¼ fins=in. ¼ 3

h ¼ fin height ¼ 1 in.

b ¼ fin thickness ¼ 0.06 in.

L ¼ effective length of tubes ¼ 10.5 ft Nw ¼ number of tubes wide ¼ 12

ST ¼ transverse pitch ¼ 4.5 in. (staggered)

Calculate Ao; Af , and At. From Eq. (40),

 

 

 

2

 

 

1

¼ 0:2 ft2=ft

 

Ao ¼

 

 

 

þ 3

0:06

 

 

12

 

6

 

From Eq. (44),

 

 

 

 

 

 

 

Af ¼ p 24 ð4 2 1 þ 4 1 1

 

 

 

 

 

3

 

 

 

 

 

 

 

 

þ 2 0:06 2 þ 4 0:06Þ ¼ 4:9 ft2=ft

From Eq. (45),

 

 

 

 

 

 

 

A

4:9

þ p

2 ð1 3 0:06Þ

¼

5:33 ft2

=ft

t ¼

 

 

 

12

 

 

Copyright © 2003 Marcel Dekker, Inc.

From Eq. (39),

 

 

 

 

 

 

 

 

 

 

 

G ¼

 

 

 

 

 

 

150;000

 

¼ 6800 lb=ft2 h

 

 

 

 

 

 

12 10:5 ð4:5=12 0:2Þ

Fin pitch S ¼

1

0:06 ¼ 0:27

 

 

 

 

 

 

 

 

 

3

 

 

 

Using Eq. (65) with F ¼ 0.145 from Table 8.12 gives us

hc ¼ 0:295 68800:681 0:145

 

 

 

 

 

 

 

 

 

 

0:270:313

 

 

12:74 Btu=ft2 h F

 

 

20:319 10:2 0:060:113 ¼

 

 

 

 

Calculate fin efficiency from Eq. (64). Let metal thermal conductivity of

fins (carbon steel)

¼

24 Btu=ft h F.

 

 

 

 

 

 

 

¼ r

¼

 

 

 

 

 

m

 

 

24 12:74

 

14:57

 

 

 

 

 

 

24

 

0:06

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E ¼

 

 

 

 

 

 

 

 

 

1

 

 

 

¼ 0:6

 

1 þ 0:33 ð14:57 1=12Þ2 ð2 þ 2Þ=2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

4:9

Fin effectiveness Z ¼ 1 ð1 0:6Þ 5:33 ¼ 0:63 Hence,

Zhc ¼ 0:63 12:74 ¼ 8 Btu=ft2 h F

Km ranges from 23 to 27 Btu=ft h F for carbon steels, depending on temperature [1]. For alloy steels it is lower.

8.19c

Q:

This example shows how one can predict the performance of a given heat transfer surface. A superheater is designed for the following conditions: 18 tubes=row, 6 rows deep, 10 ft long with 2 fins=in., 0.5 in. high and 0.075 in. thick solid fins. It has 18 streams. Surface area ¼ 2022 ft2. Tube spacing ¼ 4 in. square.

Predict the performance of the superheater under the following conditions:

Gas flow ¼ 150,000 lb=h at 1030 F

Steam flow ¼ 35,000 lb=h at 615 psig sat

Flue gas analysis (vol%): CO2 ¼ 7, H2O ¼ 12, N2 ¼ 75, O2 ¼ 6

Heat loss ¼ 2%

Surface area A ¼ 2022 ft2

Copyright © 2003 Marcel Dekker, Inc.

Let us say that U has been estimated as 10.6 Btu=ft2 h F using methods discussed earlier.

A:

Let us use the NTU method to predict the performance of the superheater. This is discussed in Q8.30. The superheater is in counterflow arrangement.

Energy transferred Q ¼ eCminðtg1 tS1 Þ

where

e ¼ 1 exp½ NTUð1 CÞ&

1 C exp½ NTUð1 CÞ&

C ¼ Cmin=Cmax

Cmin is the lower of (mass specific heat of the fluid) on gas and steam sides.

Tg1; ts1 ¼ gas and steam temperature at inlet to superheater, F Use 491 F for steam saturation temperature.

Though NTU methods generally require no iterations, a few rounds are necessary in this case to evaluate the specific heat for steam and gas, which are functions of temperature. However, let us assume that the steam-side specific heat ¼ 0.6679 and that of gas ¼ 0.286 Btu=lb F.

Cgas ¼ 150;000 0:98 0:286 ¼ 42;042

Csteam ¼ 35;000 0:6679 ¼ 23;376

Hence, Cmin ¼ 23,376.

C¼ 23;376 ¼ 0:556 42;042

NTU

¼

UA=C

min ¼

10:62 2022

¼

0:9186

23;376

 

 

 

Hence

1 exp½ 0:9186 ð1 0:556Þ&

e ¼ 1 0:556 exp½ 0:9186 ð1 0:556Þ& ¼ 0:5873

Copyright © 2003 Marcel Dekker, Inc.

Hence

Energy transfered Q ¼ 0:5873 23;376 ð1030 491Þ ¼ 6:7 MM Btu=h

Exit steam temperature

 

 

6;700; 000

 

 

þ

491

¼

287

þ

491

¼

778 F

 

 

 

 

 

 

 

 

 

 

¼ 35;000

 

0:06679

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exit gas temperature

1030

 

 

 

 

6;700;000

 

 

 

 

 

 

 

871 F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0:98 ¼

 

 

¼

 

 

 

150;000

0:286

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steam-side pressure drop is obtained as follows:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equivalent length of tube ¼ ð18=9Þ 6 10 þ ð18=9Þ 6 2:5 2

 

 

¼ 180 ft

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use 185 ft for estimation. Specific

 

volume of

steam

at the

 

average

steam

conditions of 620 psia and 635 F is 0.956 ft3=lb.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

2

 

185

 

 

 

 

 

 

 

Pressure drop ¼ 3:36 0:02

0:956

 

 

 

 

 

 

 

¼ 11:4 psi

 

 

9

 

1:7385

 

Gas-side pressure drop may be estimated using the chart in Fig. 8.7 and is about 0.6 in.WC.

8.20

Q:

A gas turbine HRSG evaporator operates under the following conditions:

Gas flow ¼ 230,000 lb h (vol % CO2 ¼ 3, H2O ¼ 7, N2 ¼ 75, O2 ¼ 15) Gas inlet temperature ¼ 1050 F

Exit gas temperature ¼ 406 F

Duty ¼ 230,000 0.99 0.27 (1050 7 406) ¼ 39.6 MM Btu=h Steam pressure ¼ 200 psig

Feedwater temperature ¼ 230 F Blowdown ¼ 5%

Fouling factors ¼ 0.001 ft2 h F=Btu on both gas and steam sides Arrangement: 4 in. square pitch

Tubes used: 2 1.773 in., 24 tubes=row, 11 ft long Fins: 5 fins=in., 0.75 in. high, 0.05 in. thick, serrated

Determine the overall heat transfer coefficient and pressure drop using the chart.

A:

The chart shown in Fig. 8.7 has been developed for serrated fins in in-line arrangement for the above gas analysis. Users may develop their charts for

Copyright © 2003 Marcel Dekker, Inc.

various configurations or use a computer program. The chart is based on an average gas temperature of 700 F and a gas analysis (vol%) of CO2 ¼ 3, H2O ¼ 7, N2 ¼ 75, O2 ¼ 15.

Ao

¼ 12 þ 5 0:75

6

 

¼ 0:1979 ft2=ft

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

0:05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G ¼

 

 

 

230;000

 

 

 

 

 

 

 

¼ 6434 lb=ft2 h

 

 

 

 

 

 

 

 

 

 

 

24 11 ð0:3333 0:1979Þ

 

 

 

 

 

Average

gas temperature

¼

728 F. From

Table 8.12, the

correction factor is

 

 

0.1402=0.139 ¼ 1.008.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

h F, Gas pressure drop over

For G ¼ 6434, hc from the chart ¼ 11.6 Btu=ft

 

10 rows ¼ 1.7 in.WC.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fin effectiveness ¼ 0.75

 

 

 

2

 

F

 

 

 

 

 

 

 

 

 

 

 

hN is small, about 0.4 Btu=ft

 

 

h

 

 

 

 

 

 

 

 

 

 

 

ho ¼ 0.75 (0.4 þ 1.008 11.6) ¼ 9.07 Btu=ft2 h F

 

 

 

 

 

The fin total surface area can be shown to be 5.7 ft2=ft.

 

 

 

 

 

Hence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At

¼

5:7 12

¼

12:29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ai

 

3:14 1:773

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let tube-side

boiling

coefficient

¼

2000 Btu=ft2 h

F and

fin

thermal con-

 

ductivity

¼

25 Btu=ft h F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

0:001

 

 

12:29

 

 

 

0:001

12:29

 

 

 

12:29

 

2

 

lnð2=1:773Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

¼

9:07

þ

 

þ

þ 2000 þ

 

 

24=25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¼ 0:110 þ 0:01229 þ 0:001 þ 0:006145 þ 0:004935 ¼ 0:1344

U

¼

7:4 Btu=ft2 h F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð1050 388Þ ð406 388Þ Log-mean temperature difference ¼ ln½ð1050 388Þ=ð406 388Þ&

¼ 178 F

Surface area required ¼ 39:6 106 ¼ 30;063 ft2 178 7:4

30;063

Number of rows deep required ¼ 24 11 5:7 ¼ 20

Gas pressure drop ¼ 1:7 2 ¼ 3:4 in. Wc

Copyright © 2003 Marcel Dekker, Inc.

8.21

Q:

How does a finned surface compare with a bare tube bundle for the same duty?

A:

Let us try to design a bare tube boiler for the same duty as above. Use the same tube size and spacing, tubes per row, and length. Use 2 1.773 in. bare tubes.

Using the procedure described in Q8.14, we can show that U ¼ 13.05 Btu=ft2 h F and that 124 rows are required for the same duty. The results are shown in Table 8.13.

It may be seen that the finned tube bundle is much more compact and has fewer rows and also a lower gas pressure drop. It also weighs less and should cost less. Therefore, in clean gas applications such as gas turbine exhaust or fume incineration plants, extended surfaces may be used for evaporators. In dirty gas applications such as municipal waste incineration or with flue gases containing ash or solid particles, bare tubes are preferred. Finned tubes may also be used in packaged boiler evaporators.

However, the heat flux inside the finned tubes is much larger, which is a concern in high gas temperature situations. The tube wall temperature is also higher. Hence when the gas temperature is high, say 1400–1700 F, we use a few

TABLE 8.13 Comparison of Bare Tube and Finned Tube Boilers

 

Bare tube

Finned tube

 

 

 

Gas flow, lb=h

 

230,000

Inlet gas temperature, F

 

1050

Exit gas temperature, F

 

407

Duty, MM Btu=h

 

39.5

Steam pressure, psig

 

200

Feedwater temperature, F

 

230

Steam flow, lb=h

 

39,200

Surface area, ft2

17,141

30,102

Overall heat transfer coeff, Btu=ft2 h F

13.0

7.39

Gas pressure drop, in. WC

5.0

3.5

Number of rows deep

124

20

Heat flux, Btu=ft2 h

9707

60,120

Tube wall temperature, F

409

516

Weight of tubes, lb

81,100

38,800

Tubes=row ¼ 24; effective length ¼ 11 ft; 4 in. square spacing. Gas analysis (vol%) CO2 ¼ 3 H2 ¼ 7, N2 ¼ 75, O2 ¼ 15. Blowdown ¼ 5%.

Copyright © 2003 Marcel Dekker, Inc.

bare tubes followed by tubes with, say, 2 fins=in. fin density and then go back to four or more fins per inch. This ensures that the gas stream is cooled before entering tube bundles with a high fin density and that the tubes are operating at reasonable temperatures, which should also lower the fin tip temperatures.

When the tube-side fouling is large, it has the same effect as a low tube-side heat transfer coefficient, resulting in poor performance when a high fin density is used. See Q8.24. One may also note the significant difference in surface areas and not be misled by this value.

8.22

Q:

Which is the preferred arrangement for finned tubes, in-line or staggered?

A:

Both in-line and staggered arrangements have been used with extended surfaces. The advantages of the staggered arrangement are higher overall heat transfer coefficients and smaller surface area. Cost could be marginally lower depending on the configuration. Gas pressure drop could be higher or lower depending on the gas mass velocity used. If cleaning lanes are required for soot blowing, an inline arrangement is preferred.

Both solid and serrated fins are used in the industry. Generally, solid fins are used in applications where the deposition of solids is likely.

The following example illustrates the effect of arrangement on boiler performance.

Example

150,000 lb=h of turbine exhaust gases at 1000 F enter an evaporator of a waste heat boiler generating steam at 235 psig. Determine the performance using solid and serrated fins and in-line versus staggered arrangements. Tube size is 2 1.77 in.

Solution. Using the ESCOA correlations and the methodology discussed above for evaporator performance, the results shown in Table 8.14 were arrived at.

8.23

Q:

How does the tube-side heat transfer coefficient or fouling factor affect the selection of fin configuration such as fin density, height, and thickness?

Copyright © 2003 Marcel Dekker, Inc.

TABLE 8.14 Comparison Between Staggered and In-Line Designs for Nearly Same Duty and Pressure Dropa

 

 

Serrated fins

 

 

Solid fins

 

 

 

 

 

 

 

 

 

 

In-line

Staggered

In-line

Staggered

 

 

 

 

Fin config.

5 0.75 0.05 0.157

 

2 0.75 0.05 0

Tubes=row

18

20

 

18

20

No. of fins deep

20

16

 

20

16

Length

10

10

 

10

11

Uo

7.18

8.36

 

9.75

10.02

DPg

3.19

3.62

 

1.72

1.42

Q

23.24

23.31

 

21.68

21.71

Surface

20,524

18,244

 

9802

9584

a Duty, MM Btu=h; DPg , in. WC; surface, ft2; temperature, F; Uo, Btu=ft2 h F.

A:

Fin density, height, and thickness affect the overall heat transfer coefficient as can be seen in Fig. 8.7. However, the tube-side coefficient also has an important bearing on the selection of fin configuration.

A simple calculation can be done to show the effect of the tube-side coefficient on Uo. It was mentioned earlier that the higher the tube-side coefficient, the higher the ratio of external to internal surface area can be. In other words, it makes no sense to use the same fin configuration, say 5 fins=in. fin density, for a superheater as for an evaporator.

Rewriting Eq. (3) based on tube-side area and neglecting other resistances,

1

1

 

Ai=At

ð66Þ

 

¼

 

þ

 

Ui

hi

hoZ

Using the data from Fig. 8.7, Ui values have been computed for different fin densities and for different hi values for the configuration indicated in Table 8.15. The results are shown in Table 8.15. Also shown are the ratio of Ui values between the 5 and 2 fins=in. designs as well as their surface area.

The following conclusions can be drawn [10].

1.As the tube-side coefficient decreases, the ratio of Ui values (between 5 and 2 fins=in.) decreases. With hi ¼ 20, the Ui ratio is only 1.11. With an hi of 2000, the Ui ratio is 1.74. What this means is that as hi decreases, the benefit of increasing the external surface becomes less attractive. With 2.325 times the surface area we have only 1.11-fold

improvement in Ui. With a higher hi of 2000, the increase is better, 1.74.

Copyright © 2003 Marcel Dekker, Inc.