Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

01 POWER ISLAND / 01 CCPP / V. Ganapathy-Industrial Boilers and HRSG-Design (2003)

.pdf
Скачиваний:
60
Добавлен:
23.06.2022
Размер:
3.75 Mб
Скачать

TABLE 7.6 Tube Diameter Versus Friction Factor (Darcy) for Turbulent Flow

di (in.)

f

0.50.028

0.750.0245

1.00.0230

1.50.0210

2.00.0195

2.50.0180

3.00.0175

4.00.0165

5.00.0160

8.00.0140

10.00.013

7.17b

Q:

Estimate the pressure drop in a superheater of a boiler that has an equivalent length of 200 ft. The tube inner diameter is 2.0 in., the flow per pass is 8000 lb=h, the steam pressure is 800 psia, and the temperature is 700 F.

A:

Using Eq. (13) and substituting v ¼ 0.78 cu ft=lb and f ¼ 0.0195 for turbulent flow from Table 7.6 (generally flow in superheaters, economizers, and piping would be turbulent), we obtain

DP ¼ 3:36 10 6 0:0195 200 80002 02:785 ¼ 21 psi

7.18a

Q:

How does the friction factor depend on pipe roughness?

A:

For smooth tubes such as copper and other heat exchanger tubes, f [12]

f ¼ 0:133 Re 0:174

is given by

ð15Þ

Copyright © 2003 Marcel Dekker, Inc.

Substituting this into Eq. (13) gives us

DP

¼ 0:0267 r

0:8267

m

0:174 V 1:826

ð16Þ

Le

 

 

di1:174

(m is the viscosity, lb=ft h; V is the velocity, fps.)

7.18b

Q:

Determine the pressure drop per 100 ft in a drawn copper tube of inner diameter 1.0 in. when 250 lb=h of air at a pressure of 30 psig and at 100 F flows through it.

A:

Calculate the density (see Chap. 5):

45

r ¼ 29 492 359 560 15 ¼ 0:213 lb=cu ft

The effect of pressure can be neglected in the estimation of viscosity of gases up to 40 psig. For a detailed computation of viscosity as a function of pressure, readers may refer to Ref. 11. From Table 7.7, m ¼ 0.047 lb=ft h. The velocity is

 

V ¼ 250

 

 

576

 

 

 

 

¼ 60 fps

 

 

 

 

 

 

 

 

3600

 

3:14

 

0:213

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DP

¼ 0:0267

0:213

0:8267

0:047

0:174

 

601:826

¼ 7:7 psi

100

 

 

 

1

TABLE 7.7 Viscosity of Air

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature ( F)

Viscosity (lb=ft h)

 

 

 

 

100

 

 

 

0.0459

 

 

 

 

 

 

 

 

200

 

 

 

0.0520

 

 

 

 

 

 

 

 

400

 

 

 

0.062

 

 

 

 

 

 

 

 

 

600

 

 

 

0.0772

 

 

 

 

 

 

 

 

800

 

 

 

0.0806

 

 

 

 

 

 

 

 

1000

 

 

 

0.0884

 

 

 

 

 

 

 

 

1200

 

 

 

0.0957

 

 

 

 

 

 

 

 

1400

 

 

 

0.1027

 

 

 

 

 

 

 

 

1600

 

 

 

0.1100

 

 

 

 

 

 

 

 

1800

 

 

 

0.1512

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2003 Marcel Dekker, Inc.

15:2 Wdi5

7.19a

Q:

Derive the expression for DP for laminar flow of fluids.

A:

For laminar flow of fluids in pipes such as that occurring with oils, the friction factor is

64

 

 

 

f ¼

 

 

 

ð17aÞ

Re

Substituting into Eq. (13) and using Eq. (14) gives us

DP ¼ 3:36 10 6 64 dimW 2

Le v

 

 

¼ 14:4 10 6 W Le vm di4

Converting lb=h to gph (gallons per hour), we can rewrite this as

DP ¼ 4:5 10 6 Le cS s gph di4

ð17bÞ

ð18Þ

where

cS ¼ viscosity, centistokes s ¼ specific gravity

Equation (18) is convenient for calculations for oil flow situations.

7.19b

Q:

Estimate the pressure drop per 100 ft in an oil line when the oil has a specific gravity of 16 API and is at 180 F. The line size is 1.0 in., and the flow is 7000 lb=h.

A:

We must estimate Re. To do this we need the viscosity [13] in centistokes:

195

 

 

cS ¼ 0:226 SSU

 

for SSU 32 100

ð19Þ

SSU

135

 

 

cS ¼ 0:220 SSU

 

for SSU > 100

ð20Þ

SSU

SSU represents the Saybolt seconds, a measure of viscosity. Also, cS s ¼ cP, where cP is the viscosity in centipoise, and 0.413 cP ¼ 1 lb=ft h.

Copyright © 2003 Marcel Dekker, Inc.

The specific gravity is to be found. At 180 F, from Eq. (23) (see Q7.21) it can be shown that the specific volume at 180 F is 0.0176 cu ft=lb. Then

1

s ¼ 0:0176 62:4 ¼ 0:91

Hence cP ¼ 0.91 24.83, where

135

cS ¼ 0:22 118 118 ¼ 24:83

and

m ¼ 2:42 0:91 24:83 ¼ 54:6 lb=ft h

7000

Re ¼ 15:2 0:91 24:83 2:42 ¼ 1948

(2.42 was used to convert cP to lb=ft h.) From Eq. (17a),

64

¼ 0:0328

 

 

 

 

f ¼

 

 

 

 

 

1948

 

 

 

Substituting into Eq. (17b) yields

 

 

 

DP ¼ 14

10 6 54:6 7000 100

 

1

 

¼ 9:42 psi

 

 

 

0:91

 

62:4

 

 

 

 

 

 

7.20a

Q:

For viscous fluids in turbulent flow, how is the pressure drop determined?

A:

For viscous fluids, the following expression can be used for the friction factor:

f ¼

0:316

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð21Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Re0:22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting into Eq. (13) gives us

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

3:36

 

10 6

 

0:361

 

d

0:22L

W 2

 

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð15:2W Þ0:22di5

 

 

D

 

¼

 

 

 

 

 

 

 

 

 

ð

i

 

e

 

 

22

Þ

 

 

¼ 0:58

10

6

m

0:22

W

1:78

Le

v

 

 

ð

 

 

 

 

 

 

d4:78

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

Copyright © 2003 Marcel Dekker, Inc.

7.20b

Q:

A fuel oil system delivers 4500 lb=h of light oil at 70 F in a pipe. What is the flow

that can be delivered at 30 F, assuming that m70=m30 ¼ 0:5; v70=v30 ¼ 0:95, and flow is turbulent?

A:

Using Eq. (22), we have

v1W11:78m01:22 ¼ v2W21:78m02:22

45001:78 0:50:22 0:95 ¼ W21:78

or

W2 ¼ 4013 lb=h

7.21

Q:

What is the flow in gpm if 1000 lb=h of an oil of specific gravity (60=60 F) ¼ 0.91 flows in a pipe at 60 F and at 168 F?

A:

We need to know the density at 60 F and at 168 F.

At 60 F:

Density ¼ r ¼ 0:91 62:4 ¼ 56:78 lb=cu ft

1

v60 ¼ 56:78 ¼ 0:0176 cu ft=lb

Hence at 60 F,

1000

q ¼ 60 56:78 ¼ 0:293 cu ft=min ðcfmÞ ¼ 0:293 7:48 ¼ 2:2 gpm

At 168 F, the specific volume of fuel oils increases with temperature:

vt ¼ v60½1 þ Eðt 60Þ&

ð23Þ

where E is the coefficient of expansion as given in Table 7.8 [13]. For this fuel oil, E ¼ 0.0004. Hence,

v168 ¼ 0:0176 ð1 þ 0:0004 108Þ ¼ 0:01836 cu ft=lb

Copyright © 2003 Marcel Dekker, Inc.

TABLE 7.8 Expansion Factor for Fuel Oils

API

E

14.9

0.00035

15–34.9

0.00040

35–50.9

0.00050

51–63.9

0.00060

64–78.9

0.00070

79–88.9

0.00080

89–93.9

0.00085

94–100

0.00090

 

 

Hence

q168 ¼ 1000 0:01836 60

¼0:306 cfm ¼ 0:306 7:48

¼2:29 gpm

7.22

Q:

How is the pressure loss in natural gas lines determined? Determine the line size to limit the gas pressure drop to 20 psi when 20,000 scfh of natural gas of specific gravity 0.7 flows with a source pressure of 80 psig. The length of the pipeline is 150 ft.

A:

The Spitzglass formula is widely used for compressible fluids [13]:

 

¼

 

 

 

r

 

ð

 

Þ

q

 

3410

 

F

P12 P22

 

 

 

24

 

 

 

 

 

 

 

 

sL

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q ¼ gas flow, scfh

 

 

 

 

 

P1;

s ¼ gas specific gravity

 

 

P2 ¼ gas inlet and exit pressures, psia

 

 

 

 

F ¼ a function of pipe inner diameter (see Table 7.9)

 

 

 

 

L ¼ length of pipeline, ft

 

 

Substituting, we have

 

 

r

 

 

 

 

 

¼

 

 

 

 

 

20;000

 

3410

 

F

952 752

 

 

 

 

 

 

 

 

 

 

 

0:7

 

150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2003 Marcel Dekker, Inc.

Hence F ¼ 1.03. From Table 7.9 we see that d should be 114 in. Choosing the next higher standard F or d limits the pressure drop to desired values. Alternatively, if q; d; L, and P1 are given, P2 can be found.

7.23

Q:

Determine the pressure loss in a rectangular duct 2 ft 2.5 ft in cross section if 25,000 lb=h of flue gases at 300 F flow through it. The equivalent length is 1000 ft.

TABLE 7.9 Standard Steel Pipea Data (Black, Galvanized, Welded, and

Seamless)

 

 

 

 

 

 

 

Functions

Nominal

 

Outside

Inside

Wall

of inside

pipe size

 

diameter

diameter

thickness

diameter,c

[in. (mm)]

Scheduleb

[in. (mm)]

(in.)

(in.)

F (in.)

 

 

 

 

 

 

 

1=8 (6)

40

0.405

(10.2)

0.269

0.068

0.00989

1=4 (8)

40

0.540

(13.6)

0.364

0.088

0.0242

3=8 (10)

40

0.675

(17.1)

0.493

0.091

0.0592

1=2 (15)

40

0.840

(21.4)

0.622

0.109

0.117

3=4 (20)

40

1.050

(26.9)

0.824

0.113

0.265

1

(25)

40

1.315

(33.8)

1.049

0.113

0.533

11=4 (32)

40

1.660

(42.4)

1.380

0.140

1.17

11=2 (40)

40

1.900

(48.4)

1.610

0.145

1.82

2

(50)

40

2.375

(60.2)

2.067

0.154

3.67

21=2 (65)

40

2.875

(76.0)

2.469

0.203

6.02

3

(80)

40

3.500

(88.8)

3.068

0.216

11.0

4

(100)

40

4.500

(114.0)

4.026

0.237

22.9

5

(125)

40

5.563

(139.6)

5.047

0.258

41.9

6

(150)

40

6.625

(165.2)

6.065

0.280

68.0

8

(200)

40

8.625

(219.1)

7.981

0.322

138

8

(200)

30

8.625

 

8.071

0.277

142

10 (250)

40

10.75 (273.0)

10.020

0.365

247

10 (250)

30

10.75

 

10.136

0.307

254

12 (300)

40

12.75 (323.9)

11.938

0.406

382

12 (300)

30

12.75

 

12.090

0.330

395

a ASTM A53-68, standard pipe.

b Schedule numbers are approx. values of 1000 maximum internal service pressure, psig allowable stress in material, psi

p

c F ¼ dð1 þ 0:03d þ 3:6=dÞ for use in Spitzglass formula ¼ 5=23 for gas line pressure loss. Source: Adapted from Ref. 13.

Copyright © 2003 Marcel Dekker, Inc.

A:

The equivalent diameter of a rectangular duct is given by

di ¼ 2 a

b

¼ 2

2

 

2:5

 

 

 

a þ b

4:5

¼ 2:22 ft ¼ 26:64 in:

 

 

 

 

The friction factor f

in turbulent flow region for flow in ducts and pipes is given

by [11]

 

 

 

 

f ¼

0:316

 

ð25Þ

 

 

 

Re0:25

We make use of the equivalent diameter calculated earlier [Eq. (14)] while computing Re:

W

Re ¼ 15:2 dim

From Table 7.7 at 300 F, m ¼ 0.05 lb=ft h.

25,000

Re ¼ 15:2 26:64 0:05 ¼ 285;285

Hence

0:316

f ¼ 285;2850:25 ¼ 0:014

For air or flue gases, pressure loss is generally expressed in inches of water column and not in psi. The following equation gives DPg [11]:

DPg ¼ 93 10 6

L

ð26Þ

fW 2v d5e

where di is in inches and the specific volume is v ¼ 1=r.

40

r ¼ 460 þ 300 ¼ 0:526 lb=cu ft

Hence

 

 

 

 

1

¼ 19 cu ft=lb

 

 

v ¼

 

 

 

0:0526

 

 

Substituting into Eq. (26), we have

 

 

DPg ¼ 93 10 6 0:014 25;0002 19

1000

 

¼ 1:16 in: WC

 

5

 

 

ð26:64Þ

 

 

Copyright © 2003 Marcel Dekker, Inc.

7.24a

Q:

Determine the Reynolds number when 500,000 lb=h of superheated steam at 1600 psig and 750 F flows through a pipe of inner diameter 10 in.

A:

The viscosity of superheated steam does not vary as much with pressure as it does with temperature (see Table 7.5).

m ¼ 0:062 lb=ft h

Using Eq. (14), we have

 

 

 

Re ¼ 15:2

 

W

¼ 15:2

 

500;000

 

 

 

dim

10 0:062

¼ 1:25

107

 

 

 

 

7.24b

Q:

Determine the Reynolds number when hot air flows over a tube bundle.

Air mass velocity ¼ 7000 lb=ft2 h

Temperature of air film ¼ 800 F

Tube size ¼ 2 in. OD

Transverse pitch ¼ 4.0 in.

A:

The Reynolds number when gas or fluids flow over tube bundles is given by the expression

Re ¼

Gd

ð27Þ

12m

where

G ¼ fluid mass velocity, lb=ft2 h d ¼ tube outer diameter, in.

m ¼ gas viscosity, lb=ft h

At 800 F, the air viscosity from Table 7.7 is 0.08 lb=ft h; thus

2

Re ¼ 7000 12 0:08 ¼ 14;580

Copyright © 2003 Marcel Dekker, Inc.

7.25

Q:

There are three tubes connected between two headers of a super heater, and it is required to determine the flow in each parallel pass. The table gives the details of each pass.

Tube no. (pass no.)

Inner diameter (in.)

Equivalent length (ft)

 

 

 

1

2.0

400

2

1.75

350

3

2.0

370

 

 

 

Total steam flow is 15,000 lb=h, and average steam conditions are 800 psia and 750 F.

A:

Because the passes are connected between the same headers, the pressure drop in each will be the same. Also, the total steam flow will be equal to the sum of the flow in each. That is,

DP1 ¼ DP2 ¼ DP3

In other words, using the pressure drop correlation, we have

2

 

Le1

2 Le2

2

Le3

W1

f1

 

 

¼ W2 f2

 

¼ W3 f3

 

di51

di52

di53

and

 

 

 

 

 

 

 

W1

þ W2

þ W3 ¼ total flow

 

The effect of variations in steam properties in the various tubes can be neglected, because it will not be very significant.

Substituting the data and using f from Table 7.6, we obtain

W1 þ W2 þ W3 ¼ 15;000

W12 0:0195

400

¼ W22

0:02

350

 

 

 

 

 

 

 

25

ð1:75Þ5

 

 

 

¼ W32

0:0195

370

 

 

 

 

 

 

 

 

 

 

25

 

¼ a constant

Copyright © 2003 Marcel Dekker, Inc.