
- •3.4.2. Маркерный метод доступа к разделяемой среде
- •3.4.3. Форматы кадров Token Ring
- •Кадр данных и прерывающая последовательность
- •Приоритетный доступ к кольцу
- •3.4.4. Физический уровень технологии Token Ring
- •3.5. Технология fddi
- •3.5.1. Основные характеристики технологии
- •3.5.2. Особенности метода доступа fddi
- •3.5.3. Отказоустойчивость технологии fddi
- •3.5.4. Физический уровень технологии fddi
- •3.5.5. Сравнение fddi с технологиями Ethernet и Token Ring
- •3.6. Fast Ethernet и lOovg-AnyLan как развитие технологии Ethernet
- •3.6.1. Физический уровень технологии Fast Ethernet
- •Физический уровень 100Base-fx - многомодовое оптоволокно, два волокна
- •Физический уровень 100Base-tx — витая пара utp Cat 5 или stp Type 1, две пары.
- •Физический уровень 100Base-t4 — витая пара utp Cat 3, четыре пары
- •1.6.2. Правила построения сегментов Fast Ethernet: при использовании повторителей
- •Ограничения длин сегментов dte-dte
- •3.6.3. Особенности технологии 100vg-AnyLan
- •3.7. Высокоскоростная технология Gigabit Ethernet
- •3.7.1. Общая характеристика стандарта
- •1.7.2. Средства обеспечения диаметра сети в 200 м на разделяемой среде
- •3.7.3. Спецификации физической среды стандарта 802.3z
- •Многомодовый кабель
- •Одномодовый кабель
- •Твинаксиальный кабель
- •13.7.4. Gigabit Ethernet на витой паре категории 5
- •Вопросы и упражнения
- •4.1. Структурированная кабельная система
- •4.1.1. Иерархия в кабельной системе
- •4.1.2. Выбор типа кабеля для горизонтальных подсистем
- •4.1.З. Выбор типа кабеля для вертикальных подсистем
- •4.1.4. Выбор типа кабеля для подсистемы кампуса
- •4.2. Концентраторы и сетевые адаптеры
- •4.2.1. Сетевые адаптеры Функции и характеристики сетевых адаптеров
- •Классификация сетевых адаптеров
- •4.2.2. Концентраторы Основные и дополнительные функции концентраторов
- •Поддержка резервных связей
- •Защита от несанкционированного доступа
- •Многосегментные концентраторы
- •Конструктивное исполнение концентраторов
- •4.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •4.3.1. Причины логической структуризации локальных сетей Ограничения сети, построенной на общей разделяемой среде
- •Преимущества логической структуризации сети
- •Структуризация с помощью мостов и коммутаторов
- •4.3.2. Принципы работы мостов Алгоритм работы прозрачного моста
- •Мосты с маршрутизацией от источника
- •Ограничения топологии сети, построенной на мостах
- •4.3.3. Коммутаторы локальных сетей
- •4.3.4. Полнодуплексные протоколы локальных сетей Изменения в работе мас-уровня при полнодуплексной работе
- •4.3.5. Управления потоком кадров при полудуплексной работе
- •4.4 Техническая реализация и дополнительные функции коммутаторов
- •4.4.1. Особенности технической реализации коммутаторов
- •Коммутаторы на основе коммутационной матрицы
- •Коммутаторы с общей шиной
- •Коммутаторы с разделяемой памятью
- •Минированные коммутаторы
- •Конструктивное исполнение коммутаторов
- •4.4.2. Характеристики, влияющие на производительность коммутаторов
- •Коммутация «на лету» или с буферизацией
- •Размер адресной таблицы
- •Объем буфера кадров
- •4.4.3. Дополнительные функции коммутаторов
- •Трансляция протоколов канального уровня
- •Возможности коммутаторов по фильтрации трафика
- •Приоритетная обработка кадров
- •4.4.4. Виртуальные локальные сети
- •4.4.5. Типовые схемы применения коммутаторов в локальных сетях Сочетание коммутаторов и концентраторов
- •Стянутая в точку магистраль на коммутаторе
- •Распределенная магистраль на коммутаторах
- •Сетевой уровень как средство построения больших сетей
- •5.1.Принципы объединения сетей на основе протоколов сетевого уровня
- •5.I. Ограничения мостов и коммутаторов
- •5.1.2. Понятие internetworking
- •5.1.3. Принципы маршрутизации
- •5.1.4. Протоколы маршрутизации
- •5.1.5. Функции маршрутизатора
- •Уровень интерфейсов
- •Уровень сетевого протокола
- •Уровень протоколов маршрутизации
- •5.1.6. Реализация межсетевого взаимодействия средствами tcp/ip
- •Уровень межсетевого взаимодействия
- •Основной уровень
- •Прикладной уровень
- •Уровень сетевых интерфейсов
- •5.2. Адресация в ip-сетях
- •5.2.1. Типы адресов стека tcp/ip
- •5.2.2. Классы ip-адресов
- •5.2.3. Особые ip-адреса
- •5.2.4. Использование масок в ip-адресации
- •5.2.5. Порядок распределения ip-адресов
- •5.2.6. Автоматизация процесса назначения ip-адресов
- •5.2.7. Отображение ip-адресов на локальные адреса
- •5.2.8. Отображение доменных имен на ip-адреса Организация доменов и доменных имен
- •5.3. Протокол ip
- •5.3.1. Основные функции протокола ip
- •5.3.2. Структура ip-пакета
- •5.3.3. Таблицы маршрутизации в ip-сетях
- •Примеры таблиц различных типов маршрутизаторов
- •Назначение полей таблицы маршрутизации
- •Источники и типы записей в таблице маршрутизации
- •5.3.4. Маршрутизация без использования масок
- •5.3.5. Маршрутизация с использованием масок Использование масок для структуризации сети 1
- •Использование масок переменной длины
- •5.3.6. Фрагментация ip-пакетов
- •5.3.7. Протокол надежной доставки tcp-сообщений
- •Сегменты и потоки
- •Соединения
- •5.4 Протоколы маршрутизации в ip-сетях
- •5.4.1. Внутренние и внешние протоколы маршрутизации Internet
- •5.4.2. Дистанционно-векторный протокол rip Построение таблицы маршрутизации
- •Этап 1 — создание минимальных таблиц
- •Этап 2 — рассылка минимальных таблиц соседям
- •5.4.3. Протокол «состояния связей» ospf
5.1.5. Функции маршрутизатора
Основная функция маршрутизатора — чтение заголовков пакетов сетевых протоколов, принимаемых и буферизуемых по каждому порту (например, IPX, IP, AppleTalk или DECnet), и принятие решения о дальнейшем маршруте следования пакета по его сетевому адресу, включающему, как правило, номер сети и номер узла.
Функции маршрутизатора могут быть разбиты на 3 группы в соответствии с Уровнями модели OSI (рис. 5.3).
Рис. 5.3. Функциональная модель маршрутизатора
Уровень интерфейсов
На нижнем уровне маршрутизатор, как и любое устройство, подключенное к сети, обеспечивает физический интерфейс со средой передачи, включая согласование уровней электрических сигналов, линейное и логическое кодирование, оснащение определенным типом разъема. В разных моделях маршрутизаторов часто предусматриваются различные наборы физических интерфейсов, представляющих собой комбинацию портов для подсоединения локальных и глобальных сетей. С каждым интерфейсом для подключения локальной сети неразрывно связан определенный протокол канального уровня — например, Ethernet, Token Ring, FDDI. Интерфейсы для присоединения к глобальным сетям чаще всего определяют только некоторый стандарт физического уровня, над которым в маршрутизаторе могут работать различные протоколы канального уровня. Например, глобальный порт может поддерживать интерфейс V.35, над которым могут работать протоколы канального уровня: LAP-B (используемый в сетях Х.25), LAP-F (используемый в сетях frame relay), LAP-D (используемый в сетях ISDN). Разница между интерфейсами локальных и глобальных сетей объясняется тем, что технологии локальных сетей работают по собственным стандартам физического уровня, которые не могут, как правило, использоваться в других технологиях, поэтому интерфейс для локальной сети представляет собой сочетание физического и канального уровней и носит название по имени соответствующей технологии — например, интерфейс Ethernet.
Интерфейсы маршрутизатора выполняют полный набор функций физического и канального уровней по передаче кадра, включая получение доступа к среде (если это необходимо), формирование битовых сигналов, прием кадра, подсчет его контрольной суммы и передачу поля данных кадра верхнему уровню, в случае если контрольная сумма имеет корректное значение.
ПРИМЕЧАНИЕ Как и любой конечный узел, каждый порт маршрутизатора имеет собственный аппаратный адрес (в локальных сетях МАС-адрес), по которому ему и направляются кадры, требующие маршрутизации, другими узлами сети.
Перечень физических интерфейсов, которые поддерживает та или иная модель маршрутизатора, является его важнейшей потребительской характеристикой. Маршрутизатор должен поддерживать все протоколы канального и физического уровней, используемые в каждой из сетей, к которым он будет непосредственно присоединен. На рис. 5.3 показана функциональная модель маршрутизатора с четырьмя портами, реализующими следующие физические интерфейсы: 10Base-T и 10Base-2 для двух портов Ethernet, UTP для Token Ring и V.35, над которым могут работать протоколы LAP-B, LAP-D или LAP-F, обеспечивая подключение к сетям Х.25, ISDN или frame relay.
Кадры, которые поступают на порты маршрутизатора, после обработки соответствующими протоколами физического и канального уровней, освобождаются от заголовков канального уровня. Извлеченные из поля данных кадра пакеты передаются модулю сетевого протокола.