
- •Основные газовые законы. Определение молекулярных масс газообразных веществ.
- •2. Основные стехиометрические законы.
- •3. Понятие о химическом эквиваленте и эквивалентной массе простых и сложных веществ. Закон химических эквивалентов.
- •4. Волновые свойства электрона. Квантовые числа, s-,p-,d-,f-состояния электрона. Электронные орбитали.
- •5. Принцип Паули. Емкость энергетических уровней и подуровней атомов элементов.
- •6. Связь периодического закона со строением электронных оболочек атомов. Правило Клечковского. Энергетические ячейки. Правило Гунда.
- •7. Периодический закон д.И.Менделеева и периодическая система элементов: ряды, периоды, подгруппы, порядковый номер.
- •8. Периодическое изменение свойств химических элементов. Радиус атомов, сродство к электрону, энергия ионизации, электроотрицательность.
- •9. Образование химической связи. Энергия связи и длина связи.
- •10. Ковалентная (атомная) связь. Метод валентных связей. Возбужденные состояния атомов. Валентность.
- •11. Направленность ковалентной связи. Сигма и п-связи. Гибридизация атомных орбиталей.
- •12. Ионная (электронная) связь.
- •13. Полярная связь. Полярность молекул и их дипольный момент.
- •14. Донорно-акцепторный механизм ковалентной связи. Комплексные соединения.
- •15. Межмолекулярное взаимодействие. Водородная связь.
- •16. Система. Фаза. Компонент. Параметры. Функции состояния: внутренняя энергия и энтальпия. Стандартные условия.
- •17. Первое начало термодинамики. Закон Гесса как следствие 1-го начала термодинамики.
- •17. Первое начало термодинамики. Закон Гесса как следствие 1-го начала термодинамики.
- •18. Стандартная энтальпия образования. Следствие из закона Гесса. Термохимические расчеты.
- •19. Зависимость теплового эффекта реакции от температуры.
- •20. Второе начало термодинамики. Понятие об энтропии. Расчет энтропии.
- •21. Объединенная формула 1 и 2 начала термодинамики. Свободная энергия Гиббса и Гельмгольца.
- •22. Условия самопроизвольного протекания химических реакций.
- •23. Константа химического равновесия. Расчет Кр и Кс. Изотерма химической реакции.
- •24. Принцип подвижного равновесия (принцип Ле-Шателье).
- •25. Скорость химической реакции. Закон действующих масс. Константа скорости.
- •26. Молекулярность и порядок реакции.
- •28. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса.
- •29. Энергия активации химической реакции. Аналитический и графический метод расчета.
- •30. Скорость гетерогенной химической реакции.
- •31. Катализ. Сущность гомогенного и гетерогенного катализа.
- •32. Растворы (разбавленные, концентрированные, насыщенные, перенасыщенные).
- •33. Физические и химические процессы при растворении. Растворимость твердых тел и жидкостей в жидкостях.
- •34. Растворимость газов в жидкостях. Закон Генри-Дальтона. Закон распределения.
- •35. Законы Рауля.
- •36. Электролитическая диссоциация. Степень диссоциации. Слабые электролиты.
- •37. Константы диссоциации. Закон разведения.
- •38. Сильные электролиты. Понятие активности и коэффициента активности.
- •39. Электролитическая диссоциация воды. Ионные произведения воды. Водородный показатель. Понятие об индикаторах.
- •40. Гидролиз солей.
- •41. Окислительно-восстановительные реакции. Ионно-электронный метод подбора коэффициентов в окислительно-восстановительных реакциях.
- •42. Возникновение скачка потенциала на границе раздела «металл-раствор». Равновесный электродный потенциал.
- •43. Медно-цинковый гальванический элемент. Процессы на электродах. Эдс.
- •44. Зависимость эдс гальванического элемента от природы реагирующих веществ, температуры и концентрации. Стандартная эдс.
- •45. Стандартный водородный электрод. Формула Нернста. Стандартный потенциал. Ряд напряжения.
- •46. Типы электродов и цепей. Окислительно-восстановительные электроды и цепи.
- •47. Электролиз. Последовательность разряда ионов на катоде и аноде.
- •48. Законы Фарадея. Выход по току.
- •49. Химическая и концентрационная поляризация при электролизе. Перенапряжение.
- •50. Классификация химических источников тока.
- •51. Коррозия металлов. Химическая и электрохимическая коррозия.
- •52. Основные методы борьбы с коррозией.
- •53. Кристаллическое состояние вещества. Химическая связь в кристаллах.
- •54. Сущность физико-химического анализа. Правило фаз. Диаграмма состояния воды.
- •55. Основные принципы построения диаграммы плавкости бинарных систем. Термографический анализ.
- •60. Произведение растворимости. Условия выпадения осадка.
9. Образование химической связи. Энергия связи и длина связи.
При взаимодействии атомов между ними может возникнуть связь, приводящая к образованию устойчивой многоатомной системы – молекулы, молекулярного иона, кристалла. Чем прочнее связь, тем больше энергии необходимо затратить на ее разрыв. При образовании связи выделятся энергия, следовательно, уменьшается свободная потенциальная энергия системы взаимодействующих электронов и ядер.
Потенциальная энергия образующейся молекулы всегда меньше, чем суммарная потенциальная энергия исходных свободных атомов.
Длина связи – межъядерное расстояние в невозбужденной молекуле, обычно равно 1-2 ангстрем (0,1-0,2 нм).
Энергия связи – энергия, выделяющаяся при образовании данного вида связи (150-1000 кДж/моль).
10. Ковалентная (атомная) связь. Метод валентных связей. Возбужденные состояния атомов. Валентность.
К.с. возникает между элементами с одинаковым или близким значением энергии сродства к электрону. Валентность атомов в соединениях с ковалентной связью определяется по числу электронных пар. Для определения относительных зарядов в атомах с ковалентной связью надо мысленно связь разорвать и руководствоваться следующим правилом: при разрыве связи в пределах периода электрон смещается от левее стоящего элемента к правее стоящего, а в пределах главной подгруппы от ниже стоящему к выше. Механизм возникновения ковалентной связи: 2 метода объяснения: 1 – метод валентных связей, 2 – метод молекулярных орбиталей. В основе м.в.с. лежит 3 положения:
- Химическую связь образуют 2 электрона с противоположно направленными спинами. Имеет место взаимное перекрытие электронных орбиталей, при этом в пространстве между атомами возникает повышенная плотность электронного облака и к этой области притягиваются ядра атомов и оставшиеся электроны.
- Химическая связь имеет ориентацию в направлении, обеспечивающем максимально возможное перекрытие орбиталей.
- Чем больше взаимное перекрытие электронных орбиталей, тем прочнее связь.
Валентными являются неспаренные электроны. Для определения числа валентных электронов необходимо изобразить электронную оболочку атома в форме энергетических ячеек. В нормальных условиях S двух валентна а Cl – 1, однако в возбуждённом состояния S – может проявить валентность 4 и 6, а хлор – 3, 5, 7. Атомы серы и хлора можно возбудить. При возбуждении за счёт поступающей из вне энергии имеет место распаривание электронных пар и переход электрона на более удалённый подуровень. Затраченная энергия должна компенсироваться при протекании реакции с участием возбужденных атомов.
Валентность элемента в химическом соединении определяется по числу общих электронных пар.
Метод молекулярных орбиталей: метод валентных связей в целом ряде случаев не может объяснить механизм возникновения ряда соединений и свойств образованных молекул. Согласно м.в.с в молекуле кислорода нет неспаренных электронов. Если в-во не имеет неспаренных электронов, то оно не имеет магнитного поля и выталкивается из внешнего магнитного поля (диамагнетик). Если вещество имеет собственное магнитное поле, оно втягивается во внешнее поле (парамагнетик). Кислород – парамагнетик. С т.з. вал связей трудно объяснить, что ряд веществ, теряя электроны, становятся прочнее. При возникновении химической связи электроны переходят на молекулярные орбитали. Различают два вида молекулярных орбиталей: связывающие и разрыхляющие. При возникновении связовающих волновые ф-ции электронов складываются таким образом, что в межъядерном пространстве плотность электронного облака повышается, ядра притягиваютя к этой области. В случае разрыхляющих орбиталей – между ядрами происходит разрежение электронной плотности и ядра отталкиваются. Разрежённые электроны обладают избыточной энергией, если молекула теряет электрон, то она теряет его с разрыхляющей орбитали и становится прочнее.