Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экспериментальные методы исследований. Калинин Ю.Е

.pdf
Скачиваний:
12
Добавлен:
01.05.2022
Размер:
9.39 Mб
Скачать

При пропускании электрического тока между диафрагмой и электродом, расположенным в растворе КОН, происходит перетравливание заготовки. По мере травления толщина перетравливаемой области становится настолько малой, что происходит разрыв заготовки за счет веса нижней части. При этом, нижняя часть падает, что автоматически разрывает электрическую цепь и останавливает процесс травления.

Другая широко применяемая методика приготовления СТМ зондов - перерезание тонкой проволоки из PtIr сплава с помощью обыкновенных ножниц. Перерезание производится под углом порядка 45 градусов с одновременным натяжением P проволоки на разрыв (рис. 8.17). Процесс формирования острия в этом случае отчасти сходен с процессом изготовления острия из вольфрама. При перерезании происходит пластическая деформация проволоки в месте резки и обрыв ее под действием растягивающего усилия Р. В результате в месте разреза формируется вытянутое острие с неровным (рваным) краем с многочисленными выступами, один из которых и оказывается рабочим элементом СТМ зонда.

Рис. 8.17. Схематичное изображение процесса формирования СТМ острия при перерезании проволоки из PtIr сплава

421

Данная технология изготовления СТМ зондов применяется сейчас практически во всех лабораториях и почти всегда обеспечивает гарантированное атомарное разрешение при СТМ исследованиях поверхности.

8.2.2. Атомно-силовая микроскопия

Атомно-силовой микроскоп (АСМ) был изобретён в 1986 году Гердом Биннигом, Кэлвином Куэйтом и Кристофером Гербером. В основе работы АСМ лежит силовое взаимодействие между зондом и поверхностью, для регистрации которого используются специальные зондовые датчики, представляющие собой упругую консоль с острым зондом на конце (рис. 8.18). Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Регистрируя величину изгиба, можно контролировать силу взаимодействия зонда с поверхностью. Потенциал ЛеннардаДжонса позволяет оценить силу взаимодействия зонда с образцом (рис. 8.18). Общую энергию системы можно получить, суммируя элементарные взаимодействия для каждого из атомов зонда и образца.

Получение АСМ изображений рельефа поверхности связано с регистрацией малых изгибов упругой консоли зондового датчика. В атомно-силовой микроскопии для этой цели широко используются оптические методы (рис. 8.19).

Оптическая система АСМ юстируется таким образом, чтобы излучение полупроводникового лазера фокусировалось на консоли зондового датчика, а отраженный пучок попадал в центр фоточувствительной области фотоприемника. В качестве позиционно – чувствительных фотоприемников применяются четырехсекционные полупроводниковые фотодиоды.

При сканировании образца в режиме AZ = const зонд перемещается вдоль поверхности, при этом напряжение на Z- электроде сканера записывается в память компьютера в качестве рельефа поверхности Z = f(x,y). Пространственное

422

разрешение АСМ определяется радиусом закругления зонда и чувствительностью системы, регистрирующей отклонения консоли. В настоящее время реализованы конструкции АСМ, позволяющие получать атомарное разрешение при исследовании поверхности образцов.

Рис. 8.18. Принцип работы атомно-силового микроскопа

423

Рис. 8.19. Схема оптической регистрации изгиба консоли зондового датчика АСМ

Зондирование поверхности в атомно-силовом микроскопе производится с помощью специальных зондовых датчиков, представляющих собой упругую консоль - кантилевер (cantilever) с острым зондом на конце. Датчики изготавливаются методами фотолитографии и травления из кремниевых пластин. Упругие консоли формируются, в основном, из тонких слоев легированного кремния, SiO2 или

Si3N4.

Один конец кантилевера жестко закреплен на кремниевом основании - держателе. На другом конце консоли располагается собственно зонд в виде острой иглы. Радиус закругления современных АСМ зондов составляет 1 - 50 нм в зависимости от типа зондов и технологии их изготовления.

Угол при вершине зонда - 10 – 20о. Силу взаимодействия зонда с поверхностью F можно оценить следующим образом:

F = k·∆Z,

(8.8)

где k - жесткость кантилевера; ∆Z - величина, характеризующая его изгиб.

424

Коэффициенты жесткости кантилеверов k варьируются в диапазоне 10-3 - 10 Н/м в зависимости от используемых при их изготовлении материалов и геометрических размеров. При работе зондовых АСМ датчиков в колебательных режимах важны резонансные свойства кантилеверов.

В атомно-силовой микроскопии применяются, в основном, зондовые датчики двух типов - с кантилевером в виде балки прямоугольного сечения и с треугольным кантилевером, образованным двумя балками. Общий вид зондового датчика с кантилевером в виде балки прямоугольного сечения представлен на рис. 8.20. Иногда зондовые датчики АСМ имеют несколько кантилеверов различной длины (а значит, и различной жесткости) на одном основании. В этом случае выбор рабочей консоли осуществляется соответствующей юстировкой оптической системы атомно-силового микроскопа.

Рис. 8.20. Общий вид зондового АСМ датчика с одиночной консолью прямоугольного сечения

425

Зондовые датчики с треугольным кантилевером имеют при тех же размерах большую жесткость и, следовательно, более высокие резонансные частоты. Чаще всего они применяются в колебательных АСМ методиках.

Изготовление зондовых датчиков для АСМ представляет собой достаточно сложный технологический процесс, включающий в себя операции фотолитографии, ионной имплантации, химического и плазменного травления. Основные этапы одной из возможных технологий изготовления зондовых датчиков представлены на рис. 8.21.

Для изготовления зондовых датчиков используются пластины кристаллического кремния ориентации (110). На поверхность пластины осаждается тонкий слой фоторезиста (рис. 8.21, этап 2). Затем фоторезист экспонируется через фотошаблон, и часть фоторезиста удаляется посредством химического травления. Далее проводится имплантация ионов бора, так что ионы проникают на глубину порядка 10 мкм в область кремния, не защищенную фоторезистом (этап 3). После этого фоторезист смывается в специальном травителе, и затем проводится термический отжиг пластины, в результате которого атомы бора встраиваются в кристаллическую решетку кремния. Кремний, легированный бором, образует так называемый стоп-слой, который останавливает процесс травления для некоторых селективных травителей. Затем на обратной стороне пластины вновь проводится фотолитография, в результате которой формируется слой фоторезиста точно над областью, имплантированной бором. После этого пластина покрывается тонким слоем Si3N4 (этап 4). Затем проводится селективное травление фоторезиста, причем в процессе растворения фоторезист набухает и срывает расположенную непосредственно над ним тонкую пленку Si3N4 (этап 5). Пластина кремния протравливается насквозь до стоп-слоя с помощью селективного травителя, который взаимодействует с кремнием и не взаимодействует с легированным кремнием и слоем Si3N4, (этап 6).

426

Рис. 8.21. Основные этапы процесса изготовления зондовых датчиков

427

После этого Si3N4 смывается, и на обратной стороне пластины в легированной области методом фотолитографии формируются островки из фоторезиста (этап 7,8). Затем проводится травление кремния, в результате которого получаются столбики кремния под островками фоторезиста (этап 9). Далее с помощью плазменного травления из столбиков кремния формируются иглы (этап 10,11). Для улучшения отражательных свойств кантилеверы с обратной стороны (по отношению к острию) покрываются тонким слоем металла (Al, Au) методом вакуумного осаждения. В результате данных технологических операций изготавливается целый набор зондовых датчиков на одной кремниевой пластине. Для проведения электрических измерений на зонд наносятся проводящие покрытия из различных материалов (Au, Pt, Cr, W, Mo, Ti, W2C и др.). В магнитных АСМ датчиках зонды покрываются тонкими слоями ферромагнитных материалов,

таких как Co, Fe, CoCr, FeCr, CoPt и др.

8.2.3. Электросиловая микроскопия

В электросиловой микроскопии для получения информации о свойствах поверхности используется электрическое взаимодействие между зондом и образцом. Рассмотрим систему, состоящую из зондового датчика, у которого зонд имеет проводящее покрытие, и образца, представляющего собой тонкий слой материала на хорошо проводящей подложке.

Пусть между зондом и образцом подано постоянное напряжение U0 и переменное напряжение U~ = Ui sin(mt). Если тонкий слой на подложке представляет собой полупроводник или диэлектрик, то он может содержать поверхностный заряд, так что на поверхности образца существует распределение потенциала ф(х,у) (рис.8.22).

428

Рис. 8.22. Схема измерения электрического взаимодействия зонда с образцом

Система зонд - образец обладает некоторой электрической емкостью С, так что детектирование амплитуды колебаний кантилевера на частоте 2 позволяет исследовать распределение вдоль поверхности величины C z ( x , y ) - производной от емкости по координате z (так называемая емкостная микроскопия. С помощью этого метода можно изучать локальные диэлектрические свойства приповерхностных слоев образцов. Для получения высокого разрешения в данной методике необходимо, чтобы электрическая сила в системе зондовый датчик - образец определялась, в основном, взаимодействием между зондом и поверхностью.

На первом проходе с помощью пьезовибратора возбуждаются колебания кантилевера на частоте, близкой к резонансной частоте 0, и снимается АСМ изображение рельефа в "полуконтактном" режиме. Затем зондовый датчик

отводится от поверхности на расстояние zo , между зондом и

образцом подается переменное (на частоте = 0 ) напряжение, и осуществляется повторное сканирование (рис. 8.23). На втором проходе датчик движется над поверхностью

429

по траектории, повторяющей рельеф образца. Поскольку в процессе сканирования локальное расстояние между зондовым датчиком и поверхностью в каждой точке постоянно, изменения амплитуды колебаний кантилевера на частоте 2 будут связаны с изменением емкости системы зонд-образец вследствие изменения диэлектрических свойств образца.

Траектория зонда

Траектория зондового

на первом проходе

датчика на втором

Рис. 8.23. Двухпроходная методика ЭСМ

Таким образом, итоговый ЭСМ кадр представляет собой двумерную функцию Cz (x , y ) , характеризующую локальные диэлектрические свойства образца.

Детектирование сигнала на частоте позволяет изучать распределение поверхностного потенциала (x , y ) (так называемый метод Кельвина). Для этого при сканировании образца на втором проходе в каждой точке производится следующая процедура. С помощью перестраиваемого источника постоянного напряжения подбирается величина U0 таким образом, чтобы амплитуда колебаний кантилевера на частоте становилась равной нулю. Это происходит в том случае, если U0 = (x , y ) в данной точке поверхности. На рис. 8.24. в качестве примера приведены АСМ изображение рельефа поверхности и распределение поверхностного

430

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]