
- •Введение
- •1. Основы металловедения
- •1.1. Кристаллические решетки металлов
- •1.2. Реальное строение металлических кристаллов
- •1.3. Анизотропия кристаллов
- •1.4. Кристаллизация металлов
- •1.5. Аллотропия (полиморфизм) металлов
- •1.6. Основы теории сплавов
- •1.6.1. Кристаллическое строение сплавов
- •1.6.2. Особенности кристаллизации сплавов
- •1.6.3. Диаграммы состояния двойных сплавов
- •1.6.4. Свойства металлов и сплавов
- •1.7. Железо и его сплавы
- •1.7.1. Фазы в железоуглеродистых сплавах
- •1.7.2. Диаграмма состояния железо — цементит
- •1.7.3. Применение диаграммы Fe—Fe3c
- •1.7.4. Основные виды термической обработки стали
- •1.7.5. Классификация углеродистых сталей
- •1.7.6. Стали обыкновенного качества
- •1.7.7. Углеродистые качественные стали
- •1.7.8. Автоматные стали
- •1.7.9. Углеродистые инструментальные стали
- •1.7.10. Легированные стали
- •1.7.11. Классификация легированных сталей
- •1.7.12. Маркировка легированных сталей
- •1.7.13. Чугуны
- •1.8. Цветные металлы и сплавы
- •2.2. Сплавы с заданным температурным коэффициентом модуля упругости
- •3. Материалы с особыми физическими свойствами
- •3.1. Материалы с особыми магнитными свойствами
- •3.1.1. Общие сведения о ферромагнетиках
- •3.1.2. Магнитно-мягкие материалы
- •3.1.3. Магнитно-твердые материалы
- •4. Полупроводниковые материалы
- •5. Диэлектрики
- •6. Проводниковые материалы
- •6.1. Электропроводность твердых тел
- •6.2. Металлы высокой проводимости
- •6.3. Припои
- •6.4. Сверхпроводники
- •6.5. Сплавы повышенного электросопротивления
- •Рассмотрим характеристики некоторых сплавов повышенного электросопротивления.
- •6.6. Контактные материалы
- •7. Неметаллические материалы
- •7.1. Пластмассы
- •7.1.1. Классификация пластмасс
- •7.1.2. Термопластичные пластмассы
- •7.1.3. Полярные термопласты
- •7.1.4. Термореактивные пластмассы
- •7.1.5. Пластмассы с порошковыми наполнителями
- •7.1.6. Газонаполненные пластмассы
- •7.2. Резины
- •7.3. Клеи
- •7.4. Неорганическое стекло
- •7.5. Ситаллы (стеклокристаллические материалы)
- •7.6. Керамические материалы
- •Заключение
- •Библиографический список
- •Оглавление
- •394026 Воронеж, Московский просп., 14
1.5. Аллотропия (полиморфизм) металлов
Аллотропией или полиморфизмом называется способность металлов в твердом состоянии иметь различное кристаллическое строение, а, следовательно, и свойства при разных температурах.
Процесс перехода из одной кристаллической формы в другую называется аллотропическим (полиморфным) превращением. Аллотропические формы обозначают начальными буквами греческого алфавита: , , , и т. д., начиная с той формы, которая существует при более низкой температуре.
Аллотропические превращения имеют многие металлы, например железо, марганец, олово, титан и др.
Железо имеет объемно-центрированную решетку до температуры 911 °С и в интервале 1392...1539 °С (Fe), а от температуры 911 до 1392 °С имеет гранецентрированную решетку (Fe). Высокотемпературная -модификация (от 1392 до 1539 °С) иногда обозначается Fe (-железо). При 768 °С происходит изменение магнитных свойств: ниже 768 °С железо магнитно, выше 768 °С железо немагнитно (немагнитное Fe иногда называют Fe). Переход из немагнитного Fe в магнитное Fe происходит в широком районе температур, начинается (при охлаждении) или заканчивается (при нагреве) при 768 °С.
Характерным является аллотропия олова. При температуре ниже 18 °С устойчива модификация -олова (Sn), называемая серым оловом, а выше 18 °С — -олова (Sn), называемая белым оловом.
Решетка белого олова более компактна, чем серого олова, и превращение Sn Sn, идет со значительным увеличением объема. Поэтому при образовании на белом олове бугорка серого олова последнее, вследствие больших объемных изменений, рассыпается в порошок. Это явление получило название «оловянной чумы»; превращение необратимо.
Максимального значения скорость аллотропического превращения Sn Sn достигает при переохлаждении примерно до – 30 С. Поэтому опасность «оловянной чумы» особенно велика при хранении олова в зимнее время в холодном помещении.
Переход металла из одной кристаллической решетки в другую сопровождается изменением его химических и физических свойств.
1.6. Основы теории сплавов
Металлическим сплавом называется вещество, полученное сплавлением двух или более элементов, преимущественно металлических. Помимо сплавления, сплавы получают спеканием, электролизом и другими способами.
Сплавы обладают разнообразным комплексом свойств, которые в широких пределах меняются в зависимости от состава. Механические свойства многих сплавов, в отличие от чистых металлов, очень существенно можно изменять термической и другими видами обработки.
Вещества, из которых образован сплав, называются компонентами сплава. В качестве компонентов сплавов могут быть как чистые элементы, так и устойчивые химические соединения.
Фазой называется однородная часть системы, отграниченная от другой части системы поверхностью раздела, при переходе через которую свойства изменяются скачкообразно.
В сплаве кроме основных компонентов могут содержаться и примеси. Примеси бывают полезные, улучшающие свойства сплава, и вредные, ухудшающие его свойства. Примеси бывают случайные, попадающие в сплав при его приготовлении, и специальные, которые вводят для придания ему требуемых свойств.