
- •Воронеж 2006
- •Введение
- •1. Дифракция медленных электронов
- •1.1. Эксперимент Дэвиссона и Джермера
- •1.3. Рассеяние медленных электронов: вторичная электронная эмиссия
- •1.4. Волновые свойства микрочастиц. Дифракция электронов
- •2. Метод эсха
- •2.1. Основные принципы метода эсха
- •2.2. Фотоэффект в методе эсха и в рентгеновской абсорбционной спектроскопии
- •2.4. Вычисление энергии связи на основе данных, полученных методом эсха
- •2.5. Модификация диаграммы уровней, связанная с наличием двойных слоев и электрических полей
- •2.6. Собственные ширины уровней и расстояния между ними
- •2.7. Исследования поверхности методом эсха
- •3. Метод Оже-спектроскопии
- •3.1. Физические основы метода Оже-электронной спектроскопии
- •3.2. Аппаратура и методика измерений Оже-спектра
- •3.3. Методика подготовки образцов
- •3.4. Качественный и количественный анализ
- •3.4.1. Методика эксперимента
- •3.4.2. Описание экспериментальной установки
- •3.4.3. Растровая Оже-электронная спектроскопия
- •3.4.4. Применение Оже-спектроскопии
- •4. Вторично-ионная масс-спектрометрия
- •4.1. Взаимодействие ионов с веществом
- •4.2. Вторично-ионная эмиссия
- •4.3. Оборудование вимс.
- •4.3.1. Принцип действия установок.
- •Установки, не обеспечивающие анализа распределения частиц по поверхности
- •Установки, позволяющие получать сведения о распределении элемента по поверхности, со сканирующим ионным зондом
- •Установки с прямым изображением
- •4.3.2. Порог чувствительности
- •4.3.3. Анализ следов элементов
- •4.3.4. Ионное изображение
- •4.3.5. Требования к первичному ионному пучку
- •4.4. Масс-спектрометрический анализ нейтральных распыленных частиц
- •4.5. Количественный анализ
- •4.6. Глубинные профили концентрации элементов
- •4.6.1. Приборные факторы, влияющие на разрешение по глубине при измерении профилей концентрации
- •4.6.2. Влияние ионно-матричных эффектов на разрешение по глубине при измерении профилей концентрации
- •4.7. Применение
- •4.7.1. Исследование поверхности
- •4.7.2. Глубинные профили концентрации
- •4.7.3. Распределение частиц по поверхности, микроанализ и объемный анализ
- •5. Инфракрасная Фурье-спектрометрия
- •5.1. Принцип метода
- •5.2. Диапазон измеряемых значений толщины эпитаксиального слоя
- •5.3. Погрешность измерения
- •6. Эллипсометрия.
- •6.1.Эллипсометрический метод измерения толщины пленок.
- •7. Инфракрасная интерференция
- •7.1. Физические основы метода
- •7.2. Выбор спектрального диапазона и требования к параметрам подложки
- •7.3. Диапазон измеряемых толщин
- •7.4. Интерференция в видимой области спектра
- •7.5. Инфракрасная Фурье-спектрометрия
- •7.6. Принцип метода
- •7.7. Диапазон измеряемых значений толщины эпитаксиального слоя
- •7.8. Погрешность измерения
- •7.9. Измерение отклонения от плоскостности и контроль рельефа поверхности полупроводниковых пластин и структур
- •7.9.1. Отклонение от плоскостности и методы его измерения
- •7.9.2. Аппаратура для измерений отклонений от плоскостности
- •7.9.3. Погрешность измерения отклонения от плоскостности
- •7.9.4. Аппаратура для контроля рельефа полупроводниковых пластин и структур
- •Заключение
- •Библиографический список
- •394026 Воронеж, Московский просп., 14
7.9. Измерение отклонения от плоскостности и контроль рельефа поверхности полупроводниковых пластин и структур
7.9.1. Отклонение от плоскостности и методы его измерения
Отклонение от плоскостности Δ является одним из важнейших геометрических параметров, значение которого определяет качество воспроизведения топологического рисунка фотошаблона при проведении операции фотолитографии. По определению отклонение от плоскостности есть наибольшее расстояние от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка (рис. 7.7, а). Частными видами отклонения от плоскости являются выпуклость и вогнутость поверхности. Эти виды дефектов пластин возникают из-за механических напряжений, завалов края пластин при полировке, из-за брака при наклейке пластин и других причин. В микроэлектронике практический интерес представляет контроль формы поверхности в случаях, когда пластина находится в прижатом и свободном состояниях. Величина Δ, измеренная на пластине в свободном состоянии, включает в себя составляющие, характеризующие как механическую деформацию пластины, так и качество обработки контролируемой
поверхности, и поэтому может достигать больших значений. Для четкого воспроизведения топологического рисунка на поверхности пластины параметр Δ должен быть по возможности минимальным, не превышающим глубину резкости оптической системы проекционной аппаратуры. Поэтому при проведении операций экспонирования для устранения механических деформаций пластина прижимается нерабочей стороной к специальному столу с помощью вакуумного прижима. В этом случае параметр Δ определяет качество обработки поверхности пластины, которое может характеризоваться очень малыми значениями Δ.
Рис. 7.8. Интерференционные линий равной высоты зазора
Для контроля отклонения от плоскостности широко используются две группы методов, отличающихся по своему физическому принципу – интерференционные методы и методы, использущие щуповые датчики пневматические, емкостные, акустические).
Рис. 7.9. Схема призменного интерферометра с вакуумным присосом:
1 — образец; 2 — эталонная призма; 3 — экран (матовое стекло); 4 — лазер ЛГ-56; 5, 6 — коллиматоры; 7 — котировочный винт; 8 — столик с вакуумным присосом
Рис. 7.10. Схема лазерного телевизионного интерферометра УКП-2:
1 — лазер ЛГ-56; 2, 3 — коллиматор; 4 — светоделительное зеркало; 5 — эталонный клин; 6 — образец; 7, 8 — фоторегистрация; 9 — отклоняющее зеркало; 10 — объектив; 11 — передающая телевизионная камера; 12 — видеоконтрольное устройство
В некоторых зарубежных технических изданиях используют другое определение отклонения от плоскостности. При проведении измерений с помощью щуповых датчиков путем регулировки рабочего стола с прижатой к нему контролируемой пластиной предварительно выставляется некоторая базовая плоскость, часто называемая фокальной (рис. 7.7, б). При сканировании датчика вдоль поверхности пластины регистрируются отклонения рельефа поверхности со знаками «+» и «—» относительно этой фокальной плоскости. За отклонение от плоскостности принимают максимальное из измеренных отклонений ΔF с соответствующим знаком, обозначаемое FPD (Focal Plane Deviation). В некоторых случаях отклонение от плоскостности характеризуют величиной ΔT, равной максимальному размаху колебаний на регистрируемом датчиком профиле реальной поверхности и обозначаемой TIR (Total Indicator Reading). Параметры Δ и ΔT по своему определению близки друг к другу.
Принцип метода панорамной интерференции основан на интерференции монохроматического света в воздушном зазоре, образованном контролируемой поверхностью пластины и эталонной гранью оптического элемента сравнения (стеклянного клина рис. 7.10 или призмы рис. 7.9). Получаемая интерференционная картина представляет семейство чередующихся линий равной высоты зазора (рис. 7.8). Регулировкой стола, на котором установлена пластина, добиваются наименьшего числа полос на экране, что эквивалентно прилегающей плоскости параллельно эталонной грани. На интерференционной топограмме идентифицируются выступы и впадины и выбирается из них пара экстремальных точек, разделенных наибольшим числом интерференционных полос. Это число полос определяет значение неплоскостности Δ. При использовании шуповых датчиков снимаемый с них полезный сигнал пропорционален расстоянию между торцевой поверхностью датчика и поверхностью контролируемой пластины. При сканировании датчика вдоль поверхности пластины определяются ΔF и ΔT.