
- •Механика. Молекулярная физика и термодинамика. Электростатика и постоянный ток
- •Механика. Молекулярная физика и термодинамика. Электростатика и постоянный ток
- •Введение
- •Указания к решению контрольных работ
- •Поступательное движение
- •Динамика Поступательное движение
- •Примеры решения задач по теме №1
- •Задачи по теме №1
- •Примеры решения задач по теме №2
- •Задачи по теме №2
- •Фундаментальные физические постоянные
- •Механика. Молекулярная физика и термодинамика. Электростатика и постоянный ток
Задачи по теме №1
Автомобиль проходит последовательно два одинаковых участка пути, каждый по 10 м с постоянным ускорением, причем первый участок пути пройден автомобилем за 1 с, а второй – за 2 с. С каким ускорением движется автомобиль и какова его скорость в начале первого участка?
При аварийном торможении автомобиль, движущийся со скоростью 72 км/ч, остановился через 5 с. Найти тормозной путь.
Зависимость скорости материальной точки от времени имеет вид:
.Материальная точка движется прямолинейно. Каков путь, пройденный точкой за 4 с?
Определить путь, проходимый частицей, которая движется по прямолинейной траектории в течение 10 с, если ее скорость изменяется по закону v = 30 + 2t. В момент времени t0 =0, S=0.
Рядом с поездом на одной линии с передними буферами паровоза стоит человек. В тот момент, когда поезд начал двигаться с ускорением 0,1 м/с2, человек начал идти в том же направлении со скоростью 1,5 м/с. Через какое время поезд догонит человека? Определить скорость поезда в этот момент и путь, пройденный за это время человеком.
Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через две секунды после первой. Первая точка двигалась с начальной скоростью 1 м/с и ускорением 2 м/с2, вторая – с начальной скоростью 10 м/с и ускорением 1 м/с2. Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?
Пожарный поезд прошел расстояние 17 км между двумя станциями со средней скоростью 60 км/ч. При этом на разгон в начале движения и торможения перед остановкой ушло в общей сложность 4 мин, а остальное время поезд двигался с постоянной скоростью. Чему равна эта скорость?
Время отправления электрички по расписанию 12.00. На ваших часах 12.00, но мимо вас уже начинает проезжать предпоследний вагон, который движется мимо вас в течение 10 с. Последний вагон проходит мимо вас в течение 8 с. Электричка отправилась вовремя и движется равноускоренно. На какое время отстают ваши часы?
Лыжник съехал с горы длиной 40 м за 10 с, после чего он проехал по горизонтальной площадке до остановки 20 м. Считая движение с горы равноускоренным без начальной скорости, а по горизонтальной площадке равнозамедленным, найти скорость лыжника в конце горы и среднюю скорость на всем пути.
При равноускоренном движении мотоциклист за первые 5 с прошел путь в 45 м, а в следующие 5 с – путь в 95 м. Найти начальную и среднюю скорости мотоциклиста.
Велосипедист начал свое движение из состояния покоя и в течение первых 4 с двигался с ускорением 1 м/с2, затем в течение 0,1 мин он двигался равномерно и последние 20 м – равнозамедленно до остановки. Найти среднюю скорость за все время движения.
С вертолета, находящегося на высоте 1960 м, сброшен гуманитарный груз. Через какое время груз достигнет земли, если вертолет: 1) неподвижен; 2) поднимается со скоростью 19,6 м/с; 3) опускается со скоростью 19,6 м/с.
Вертикально вверх с начальной скоростью 20 м/с брошен камень. Через 1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте встретятся камни?
С балкона бросили мячик вертикально вверх с начальной скоростью 5 м/с. Через 2 с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.
Автомобиль спасательной службы движется по шоссе со скоростью 120 км/ч, а при буксировке аварийного автомобиля – со скоростью всего 30 км/ч. Чему равна его средняя скорость, если он едет половину пути один, а затем буксирует неисправный автомобиль?
Камень, брошенный со скоростью 12м/с под углом 450 к горизонту, упал на землю на некотором расстоянии от места бросания. С какой высоты надо бросить камень в горизонтальном направлении, чтобы при той же начальной скорости он упал на то же место?
Снаряд вылетает из ствола орудия, установленного на высоте 122,5 м, со скоростью 400 м/с в горизонтальном направлении. Определить время полета снаряда. Поразит ли снаряд одну из целей, расположенных на расстоянии 2 км и 5,8 км от орудия (по горизонтали) в направлении полета снаряда? Сопротивлением воздуха пренебречь.
Камень брошен с вышки со скоростью 29.4м/с в горизонтальном направлении. Найти радиус кривизны траектории камня в точке, где он будет через 4с после начала движения.
Камень брошен горизонтально. Через 3с его скорость оказалась направленной под углом 450 к горизонту. Определить начальную скорость камня.
Под углом 600 к горизонту брошено тело с начальной скоростью 20 м/с. Через какой промежуток времени оно будет двигаться под углом 450 к горизонту.
Дальность полета тела, брошенного горизонтально со скоростью 4,9 м/с, равна высоте бросания. Под каким углом к горизонту направлена скорость тела в момент его падения на землю?
Мяч брошен со скоростью υ0 под углом α к горизонту. Найти υ0 и α, если максимальная высота подъема мяча 3м, а радиус кривизны траектории мяча в этой точке 3м.
Под каким углом к горизонту надо бросить тело, чтобы высота подъема была в два раза больше дальности полета?
Камень брошен с вышки в горизонтальном направлении с начальной скоростью 30 м/с. Определить скорость, тангенциальное и нормальное ускорения камня в конце второй секунды после начала движения.
Камень брошен с вышки в горизонтальном направлении. Через промежуток времени 2 с камень упал на землю на расстоянии 40 м от основания вышки. Определить начальную и конечную скорости камня.
Камень, брошенный горизонтально на высоте 6 м, упал на землю на расстоянии 10 м от точки бросания. Найдите начальную скорость камня, нормальное и тангенциальное ускорение камня через время 0,2 с после начала движения.
Через какое время вектор скорости тела, брошенного под углом 60 к горизонту с начальной скоростью 20 м/с, будет составлять с горизонтом угол 30? Сопротивление воздуха не учитывать.
Артиллерийское орудие установлено на горе высотой 75,5 м. Снаряд вылетает из ствола со скоростью 500 м/с под углом 30 к горизонту. Определить дальность полета снаряда и скорость полета в момент падения. Сопротивление воздуха не учитывать.
С башни высотой 30 м в горизонтальном направлении брошено тело с начальной скоростью 10 м/с. Определить скорость тела в момент падения на землю и угол, который образует эта скорость с горизонтом в точке его падения.
Миномет, установленный на крыше здания высотой 60 м, стреляет под углом 30 к горизонту и поражает цель, удаленную на расстояние 7500 м (по горизонтали). Определить начальную скорость мины и продолжительность ее полета. Сопротивление воздуха не учитывать.
Точка движется по окружности радиуса 20 см с постоянным тангенциальным ускорением 5 м/с2. Через какое время после начала движения нормальное ускорение точки будет равно тангенциальному?
Зависимость пройденного телом пути по окружности радиусом 3 м задается уравнением S = At2 + Bt (A = 0,4 м/с2, В = 0,1 м/с). Определить нормальное, тангенциальное и полное ускорение тела через 1 c после начала движения.
Трамвай, начав двигаться равноускоренно по закругленному участку пути и пройдя 100 м, развил скорость 36 км/ч. Каковы тангенциальное и нормальное ускорения трамвая в конце десятой секунды после начала движения?
Поезд движется равнозамедленно по закруглению радиуса R и, пройдя путь S, приобретает скорость vk. Его начальная скорость vH. Найти время движения и полное ускорение в начале и в конце пути.
По дуге окружности радиусом 10 м движется точка. В некоторый момент времени нормальное ускорение точки 4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол 60. Найти скорость и тангенциальное ускорение точки.
С какой угловой скоростью вращается колесо, если линейная скорость точек его обода равна 0,5 м/с, а линейная скорость точек, находящихся на 4 см ближе к оси вращения, равна 0,3 м/с?
Ось с двумя дисками, расположенными на расстоянии 0,5 м друг от друга вращается с частотой 1600 об/мин. Пуля, летящая вдоль оси, пробивает оба диска; при этом отверстие от пули во втором диске смещено относительно отверстия в первом диске на угол 120. Найти скорость пули.
Маховик начал вращаться равноускоренно и за промежуток времени 10 с достиг частоты вращения 300 об/мин. Определить угловое ускорение маховика и число оборотов, которое он сделал за это время.
Диск вращается с угловым ускорением 2 рад/с2. Сколько оборотов сделает диск при изменении частоты вращения от 240 об/мин до 90 об/мин? Найти время, в течении которого это произойдет.
Материальная точка начинает двигаться по окружности радиусом 12,5 см с постоянным тангенциальным ускорением 0,5 см/с2. Определить момент времени, при котором вектор ускорения образует с вектором скорости угол 45
Найти радиус вращающегося колеса, если известно, что линейная скорость точки, лежащей на ободе, в 2,5 раза больше линейной скорости точки, лежащей на расстоянии 5 см ближе к оси колеса.
Ось с двумя дисками, расположенными на расстоянии 0,5 м друг от друга вращается с частотой 1600 об/мин. Пуля, летящая вдоль оси, пробивает оба диска; при этом отверстие от пули во втором диске смещено относительно отверстия в первом диске на угол 12. Найти скорость пули.
Колесо начинает вращаться из состояния покоя и через 1,5 с достигает угловой скорости 20 рад/с. На какой угол оно повернулось за указанное время?
Колесо вращается с постоянным угловым ускорением 3 рад/с2. Определить радиус колеса, если через 1 с после начала движения полное ускорение колеса 7,5 м/с2.
Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найти угловое ускорение колеса.
В шахту равноускоренно опускается бадья массой 280 кг. В первые 10 с она проходит 35 м. Найти силу натяжения каната, на котором висит бадья.
Вагон массой 20 т движется с начальной скоростью 54 км/ч. Определить среднюю силу, действующую на вагон, если известно, что вагон останавливается в течении 1 мин 40 с.
Автомобиль массой 1020 кг останавливается при торможении за 5 с, пройдя при этом равнозамедленно расстояние 25 м. Найти начальную скорость автомобиля и силу торможения.
На автомобиль массой 1 т во время движения действует сила трения, равная 0,1 его силы тяжести. Найти силу тяги, развиваемую мотором автомобиля, если автомобиль движется с постоянной скоростью в гору с уклоном 1 м на каждые 25 м пути.
По наклонной плоскости высотой 0,5 м и длиной склона 1 м скользит тело массой 3 кг. Тело приходит к основанию наклонной плоскости со скоростью 2,45 м/с. Найти коэффициент трения тела о плоскость/ Начальная скорость равна нулю.
Наклонная плоскость, образующая угол 250 с плоскостью горизонта, имеет длину 2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время 2 с. Определить коэффициент трения тела о плоскость.
Камень, пущенный по поверхности льда со скоростью 3 м/с, прошел до остановки расстояние 20,4 м. Найти коэффициент трения камня о лед.
Тело скользит по наклонной плоскости, образующей с горизонтом угол 450. Пройдя путь 36,4 см тело приобретает скорость 2 м/с. Найти коэффициент трения тела о плоскость.
Тело скользит с наклонной плоскости высотой h и углом наклона к горизонту и движется далее по горизонтальному участку. Принимая коэффициент трения на всем пути постоянным и равным μ, определить расстояние S, пройденное телом на горизонтальном участке, до полной остановки.
Стальная проволока выдерживает груз до 5000 Н. С каким наибольшем ускорением можно поднимать груз в 4500 Н, подвешенный на этой проволоке, чтобы она не разорвалась?
К нити подвешен груз массой 500 г. Определить силу натяжения нити, если нить с грузом: 1)поднимается с ускорением 2 м/c2; 2) опускается с ускорением 2 м/с2.
При разборе завала используется подъемный кран. Трос крана выдерживает силу натяжения 4000 Н. С каким наибольшим ускорением можно поднимать обломок стены массой 400 кг, чтобы трос при этом не разорвался?
Масса лифта с пассажирами равна 800 кг. Найти, с каким ускорением и в каком направлении движется лифт, если известно, что натяжение троса поддерживающего лифт, равно 11760 Н.
С каким ускорением нужно поднимать гирю, чтобы ее вес увеличился вдвое? С каким ускорением нужно ее опускать, чтобы вес уменьшился вдвое?
На столе стоит тележка массой 4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением будет двигаться тележка, если к другому концу шнура привязать гирю массой 1 кг?
Молекула массой 4,651026 кг, летящая нормально к стенке сосуда со скоростью 600 м/с, ударяется о стенку и упруго отталкивается от нее без потери скорости. Найти импульс силы, полученный стенкой за время удара.
Молекула массой 4,651026 кг, летящая со скоростью 600 м/с, ударяется о стенку сосуда под углом 600 к нормали и под таким же углом упруго отталкивается от нее без потери скорости. Найти импульс силы, полученный стенкой за время удара.
Мяч массы 150 г ударяется о гладкую стенку под углом 300 к ней и отскакивает без потери скорости. Найти среднюю силу, действующую на мяч со стороны стенки, если скорость мяча 10 м/с, а продолжительность удара 0,1 с.
Два шара массами 9 кг и 12 кг подвешены на нитях длиной 1,5 м. Первоначально шары соприкасаются между собой, затем меньший шар отклонили на угол 0 и отпустили. Считая удар неупругим, определить высоту на которую поднимутся оба шара после удара.
Тело массой 2 кг движется навстречу второму телу массой 1,5 кг и абсолютно неупруго соударяется с ним. Скорости тел непосредственно перед ударом были 1 м/с и 2 м/с. Какое время будут двигаться эти тела после удара, если коэффициент трения 0,05?
Шар массой 2 кг, движущийся горизонтально со скоростью 4 м/с, столкнулся с неподвижным шаром массой 3 кг. Считая удар центральным и абсолютно неупругим, найти количество теплоты, выделившееся при ударе.
Лодка массой 150 кг и длиной 2,8 м стоит неподвижно в стоячей воде. Рыбак массой 90 кг в лодке переходит с носа на корму. Пренебрегая сопротивлением воды, определить, на какое расстояние s при этом сдвинется лодка.
Тело массой 2 кг движется со скоростью 3 м/с и нагоняет второе тело массой 3 кг, движущееся со скоростью 1 м/с. Каково должно быть соотношение между массами тел, чтобы при упругом ударе первое тело после удара остановилось?
Снаряд массой 20 кг, летевший со скоростью, направленной под углом 300 к горизонту, попадает в платформу с песком массой 104 кг и застревает в песке. С какой скоростью летел снаряд, если платформа начинает двигаться со скоростью 1 м/с?
Камень массой 400 г бросили со скоростью 20 м/с в горизонтальном направлении с башни, высота которой 50 м. Найти потенциальную и кинетическую энергии камня через 2 с после начала его движения.
Автомобиль массой 2 т затормозил и остановился, пройдя путь 50 м. найти работу силы трения, если дорога горизонтальна и коэффициент трения равен 0,4.
Гиря, положенная на верхний конец спиральной пружины, сжимает ее на 2 мм. На сколько сожмет пружину та же гиря, упавшая на конец пружины с высоты 5 см?
Молот массой 70 кг падает с высоты 5 м и ударяет по железному изделию, лежащему на наковальне. Масса наковальни вместе с изделием 1330 кг. Считая удар абсолютно неупругим, определить энергию, расходуемую на деформацию изделия.
Автомобиль массой 2 т движется в гору. Уклон горы равен 4 м на каждые 100 м пути. Коэффициент трения равен 8%. Найти работу, совершенную двигателем автомобиля на пути 3 км.
Найти, какую мощность развивает двигатель автомобиля массой 1 т, если известно, что автомобиль едет с постоянной скоростью 36 км/ч по горизонтальной дороге.
Определить момент силы, который необходимо приложить к однородному диску, вращающемуся с частотой 12 с-1, чтобы он остановился через 8 с. Диаметр диска 30 см, масса диска 6 кг.
К ободу колеса радиусом 0,5 м и массой 50 кг приложена касательная сила 98,1 Н. Найти угловое ускорение колеса. Через какое время после начала действия силы колесо будет иметь частоту вращения 100 об/с? Колесо считать однородным диском. Трением пренебречь.
Маховик, момент инерции которого 63,6 кг⋅м2, вращается с угловой скоростью 31,4 рад/с. Найти момент сил торможения, под действием которого маховик остановится через 20 с. Маховик считать однородным диском.
На цилиндр, который может вращаться около горизонтальной оси, намотана нить. К концу нити привязали грузик и предоставили ему возможность опускаться. Двигаясь равноускоренно, грузик за время 3 c опустился на 1,5 м. Определите угловое ускорение цилиндра, если его радиус 4 см.
На однородный сплошной цилиндрический вал радиусом 50 см намотана легкая нить, к концу которой прикреплен груз массой 6,4 кг. Груз, опускается с ускорением 2 м/с2. Определить момент инерции вала и массу вала.
На однородный сплошной цилиндрический вал радиусом 5 см и массой 10 кг намотана легкая нить, к концу которой прикреплен груз 1 кг. Определить силу натяжения нити.
На барабан радиусом 0,5 м намотан шнур, к концу которого привязан груз 10 кг. Найти момент инерции барабана, если известно, что груз опускается с ускорением 2,04 м/с2.
К ободу однородного сплошного диска массой 10 кг, насаженного на ось, приложена постоянная касательная сила 30 Н. Определить кинетическую энергию диска через время 4 с после начала действия силы.
Маховик вращается с постоянной скоростью, соответствующей частоте 10 об/с; его кинетическая энергия 7,85 кДж. За сколько времени вращающий момент 50 Н·м, приложенный к этому маховику, увеличит угловую скорость в два раза?
Определить тормозящий момент, которым можно остановить за 20 с маховое колесо массой 50 кг и радиусом 0,30 м, вращающееся с частотой 20 об/с. Массу маховика считать распределённой по ободу. Чему равна работа, совершаемая тормозящим моментом?
По горизонтальной плоской поверхности катится диск со скоростью 8 м/с. Определить коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройдя путь в 18 м.
Сплошной цилиндр массой 10 кг катится без скольжения с постоянной скоростью 10 м/с. Определить кинетическую энергию цилиндра и время до его остановки, если на него действует сила трения 50 Н.
Сплошной шар скатывается без проскальзывания по наклонной плоскости, длина которой 10 м и угол наклона 300. Определить скорость шара в конце наклонной плоскости. Трение шара о плоскость не учитывать.
Полый тонкостенный цилиндр массой 2 кг катится по горизонтальной поверхности со скоростью 20 м/с. Определить силу, которую необходимо приложить к цилиндру, чтобы остановить его на пути 1,6 м.
Какой путь пройдет катящийся без скольжения диск, поднимаясь вверх по наклонной плоскости с углом наклона 300, если ему сообщена начальная скорость 7,0 м/с, параллельная наклонной плоскости.
КОНТРОЛЬНАЯ РАБОТА №2
ТЕМА №2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА.
ЭЛЕКТРОСТАТИКА И ПОСТОЯННЫЙ ТОК.
Законы и формулы к выполнению задач по теме №2
Основы молекулярно-кинетической теории
Основное уравнение молекулярно-кинетической теории:
,
(2.1)
где
n
– концентрация молекул газа,
– средняя кинетическая энергия молекул.
Средняя кинетическая энергия молекул:
,
(2.2)
где k – постоянная Больцмана, i – число степеней свободы, Т – температура.
Количество вещества:
,
(2.3)
где N – число частиц в газе, NA – число Авогадро, m – масса газа, μ – молярная масса газа.
Плотность газа, занимающего объем V:
.
(2.4)
Уравнение Менделеева-Клапейрона:
,
(2.5)
где P – давление, V – объем газа, μ – молярная масса газа, R – универсальная газовая постоянная, Т – температура газа.
Термодинамика
Связь между молярной С и удельной с теплоемкостями:
.
(2.6)
Молярная теплоемкость при постоянном объеме:
.
(2.7)
Уравнение Майера:
,
(2.8)
где CP – молярная теплоемкость при постоянном давлении
Первое начало термодинамики:
,
(2.9)
где Q – количество теплоты, сообщенное системе (газу); ΔU – изменение внутренней энергии газа; А – работа, совершенная газом против внешних сил.
Изменение внутренней энергии газа:
.
(2.10)
Работа, совершаемая при изменении объема газа:
.
(2.11)
Уравнения адиабатического процесса:
;
т.е.
;
(2.12)
;
т.е.
.
(2.13)
γ
– коэффициент Пуассона
.
Коэффициент полезного действия любого термодинамического цикла:
,
(2.14)
где А – работа цикла, Q1 – количество теплоты, полученного рабочим телом от нагревателя, или
,
(2.15)
где Q2 – теплота, переданная рабочим телом охладителю.
Коэффициент полезного действия идеального цикла Карно:
,
(2.16)
где Т1 и Т2 – температуры нагревателя и охладителя.
Изменение энтропии:
,
(2.17)
где А и В – пределы интегрирования, соответствующие начальному и конечному состояниям системы.
Электростатика
Закон Кулона:
,
(2.18)
где F – сила взаимодействия точечных зарядов Q1 и Q2; r – расстояние между зарядами; e – диэлектрическая проницаемость среды; ε0 – электрическая постоянная.
Напряженность электрического поля:
.
(2.19)
Потенциал электрического поля:
,
(2.20)
где П – потенциальная энергия точечного положительного заряда Q, находящегося в данной точке поля (при условии, что потенциальная энергия заряда, удаленного в бесконечность, равна нулю).
Напряженность и потенциал поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей):
,
(2.21)
где
,
φi
– напряженность и потенциал в данной
точке поля, создаваемого i-м
зарядом.
Напряженность и потенциал поля, создаваемого точечным зарядом:
,
(2.22)
где r – расстояние от заряда Q до точки, в которой определяются напряженность и потенциал.
Напряженность и потенциал поля, создаваемого проводящей заряженной сферой радиуса R на расстоянии r от центра сферы (заряд сферы Q):
если r<R, то E=0;
; (2.23)
если r=R, то
; ; (2.24)
если r>R, то
;
. (2.25)
Линейная плотность заряда (заряд, приходящийся на единицу длины заряженного тела):
.
(2.26)
Поверхностная плотность заряда (заряд, приходящийся на единицу площади поверхности заряженного тела):
.
(2.27)
Напряженность и потенциал поля, создаваемого распределенными зарядами. Если заряд равномерно распределен вдоль линии с линейной плотностью τ, то на линии выделяется малый участок длины dl с зарядом dQ=τdl. Такой заряд можно рассматривать как точечный. Напряженность dE и потенциал dφ электрического поля, создаваемого зарядом dQ, определяется формулами:
,
(2.28)
где r – радиус-вектор, направленный от выделенного элемента dl к точке, в которой вычисляется напряженность.
Используя принцип
суперпозиции электрических полей,
находим интегрированием
напряженность
и потенциал φ
поля, создаваемого распределенным
зарядом:
.
(2.29)
Интегрирование ведется вдоль всей длины l заряженной линии.
Напряженность поля, создаваемого бесконечной прямой равномерно заряженной линией или бесконечно длинным цилиндром:
,
(2.30)
где r – расстояние от нити или оси цилиндра до точки, напряженность поля в которой вычисляется.
Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью:
.
(2.31)
Связь потенциала с напряженностью:
a) в случае однородного поля
;
(2.32)
b) в случае поля, обладающего центральной или осевой симметрией:
.
(2.33)
Работа сил поля по перемещению заряда Q из точки поля с потенциалом φ1в точку с потенциалом φ2:
.
(2.34)
Электроемкость:
или
,
(2.35)
где φ – потенциал проводника (при условии, что в бесконечности потенциал проводника принимается равным нулю); U – разность потенциалов пластин конденсатора.
Электроемкость плоского конденсатора:
(2.36)
где S – площадь пластины (одной) конденсатора; d – расстояние между пластинами.
Электроемкость батареи конденсаторов:
а) при последовательном соединении:
; (2.37)
б) при параллельном соединение:
, (2.38)
где N – число конденсаторов в батарее.
Энергия заряженного конденсатора:
.
(2.39)
Постоянный ток
Сила тока:
,
(2.40)
где Q – заряд, прошедший через поперечное сечение проводника за время t.
Закон Ома:
а)
для участка цепи, не содержащего ЭДС,
,
(2.41)
где φ1–φ2=U – разность потенциалов (напряжение) на концах участка цепи;
R – сопротивление участка;
б)
для участка цепи, содержащего ЭДС,
,
(2.42)
где ε – ЭДС источника тока; R – полное сопротивление участка (сумма внешних и внутренних сопротивлений);
в)
для замкнутой (полной) цепи
,
(2.43)
где r – внутреннее сопротивление цепи; R – внешнее сопротивление цепи.
Сопротивление R и проводимость G проводника:
(2.44)
где ρ – удельное сопротивление; σ – удельная проводимость; l – длина проводника; S – площадь поперечного сечения проводника.
Сопротивление системы проводников:
при последовательном соединении
; (2.45)
при параллельном соединении
, (2.46)
где Ri – сопротивление i-го проводника.
Работа тока:
(2.47)
Первая формула справедлива для любого участка цепи, на концах которого поддерживается напряжение U, последние две – для участка, не содержащего ЭДС.
Мощность тока:
.
(2.48)
Закон Джоуля- Ленца:
(2.49)