
- •Финансы и кредит
- •080502 «Экономика и управление на предприятии (строительство)»,
- •061100 «Менеджмент организации»,
- •080801 «Прикладная информатика (в экономике)»
- •Введение
- •1. Операции наращения и дисконтирования
- •2. Наращение простыми процентами
- •3. Дисконтирование по простым процентам
- •4. Наращение сложными процентами
- •5. Дисконтирование по сложной процентной ставке
- •Оглавление
- •Финансы и кредит
- •080502 «Экономика и управление на предприятии (строительство)»,
- •061100 «Менеджмент организации»,
- •080801 «Прикладная информатика (в экономике)»
- •3 94006, Г. Воронеж, ул. 20-летия Октября, 84
4. Наращение сложными процентами
Для пояснения принципиальной разницы между простыми и сложными процентами рассмотрим такую ситуацию. Клиент положил в банк на несколько лет сумму, равную Р, под простые проценты по ставке r, причем счет можно закрыть в любое время, и происходит ежегодное начисление процентов. Если клиент через два года закроет счет, то он получит на руки F2 = Р (1 + 2r).
Но он может поступить и таким образом: через год закрыть счет, получив сумму Р (1 + r), а затем положить эту сумму еще на год, осуществив тем самым операцию реинвестирования. Такое действие позволит ему в конце второго года получить
F2' = Р (1 +r)(1 + r) = Р (1 + r)2 = Р (1 + 2r + r2) = F2 + Р∙r2.
Величина
больше F2
на величину Р∙r2
= (Р∙r)∙r,
которая представляет собой
проценты, начисленные на проценты Р∙r,
полученные за первый год. Еще значительнее
будет разница между суммой, полученной
через три года при закрытии
счета, и суммой, полученной в результате
переоформления счета каждый
год.
Ясно, что клиенту выгодно ежегодное переоформление счета. Поэтому с целью предотвращения такого рода действий и поощрения долгосрочных вкладов в коммерческой практике применяют сложные проценты.
Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала Р (как для простых процентов), а с общей суммы, включающей также и ранее начисленные и не востребованные инвестором проценты. В этом случае происходит капитализация процентов к их базе, и, следовательно, база, с которой начисляются проценты, все время возрастает. Таким образом, размер инвестированного капитала будет равен:
к концу
первого года:
=
Р + Рr
= Р (1 + r);
к концу
второго года: F2
= F
+ F
∙r
= F
(1 + r)
= Р (1 + r)
;
к концу n-го года:
Fn = P(1+r)n. (4.1)
Равенство
(4.1) называется формулой наращения по
сложным процентам или формулой наращения
сложными процентами; множитель (1+r)
‑ множителем
наращения сложных процентов или
мультиплицирующим множителем; (1
+ r)
‑ коэффициентом наращения или сложным
декурсивным коэффициентом.
Из формулы (4.1) видно, что множитель наращения равен индексу роста суммы Р за n лет. Очевидно, последовательность F , F2, ..., Fn представляет собой геометрическую прогрессию со знаменателем (1 + r).
Пример
Депозит в 200 тыс. р. положен в банк на 4 года по 15 % годовых. Найти наращенную сумму, если ежегодно начисляются сложные проценты.
Применяя формулу (4.1), получим
F4 = 200(1 + 0,15)4 = 349,801 тыс. р.
При
наращении по сложным процентам финансовое
соглашение может предусматривать
плавающие процентные ставки. Пусть
,
,
...,
- следующие друг за другом периоды и на
период
установлена процентная ставка
.
Тогда,
учитывая капитализацию начисленных
процентов при использовании
схемы
сложных процентов, наращенная сумма за
время
(считая,
что
все периоды и, следовательно, процентные
ставки измеряются в одних и тех
же соответствующих единицах) определяется
по формуле
.
(4.2)
Естественно,
формулой (4.2) можно пользоваться и в тех
случаях, когда периоды
выражены в различных единицах времени.
Необходимо только, чтобы размерность
каждого периода
была согласована с размерностью
процентной ставки
ik.
Пример
Предприниматель получил в банке ссуду в размере 25 тыс. р. сроком на 6 лет на следующих условиях: для первого года процентная ставка равна 10% годовых, на следующие два года устанавливается маржа в размере 0,4% и на последующие годы маржа равна 0,7 %. Найти сумму, которую предприниматель должен вернуть в банк по окончании срока ссуды.
Так
как Р = 25 тыс. р.,
=
1 год, n2
= 2 года,
= 3 года,
=
0,1; i2
= 0,104; i3
= 0,107, то по формуле (4.2)
F6 = 25(1 + 0,1)(1 + 0,104)2(1 + 0,107)3 = 45,469 тыс. р.
Достаточно обыденными являются финансовые контракты, заключаемые на период, отличающийся от целого числа лет. В этом случае проценты могут начисляться с помощью следующих методов:
- по схеме сложных процентов:
Fn=P
(4.3)
- по смешанной схеме (используется схема сложных процентов для целого числа лет и схема простых процентов ‑ для дробной части года):
Fn=P
(4.4)
где w = [n] ‑ целое число лет (квадратной скобкой обозначена целая часть числа);
f ‑ дробная часть года (f = n - [g]); n = w + f.
Очевидно, что при f = 0 формулы (4.3) и (4.4) совпадают между собой и с формулой (4.1).
Пример
Банк предоставил ссуду в размере 10 тыс. р. на 30 месяцев под 30 % годовых на условиях ежегодного начисления процентов. Какую сумму предстоит вернуть банку по истечении срока?
В данном случае n = 2,5; w = 2; f = 0,5.
По формуле (4.3):
=
10(1 + 0,3
=19,269
тыс. р.
По формуле (4.4):
= 10(1 + 0,3)2(1 + 0,5∙0,3) = 19,435 тыс. р.
Таким образом, в условиях задачи смешанная схема начисления процентов более выгодна для банка.