Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Методическое пособие 493

.pdf
Скачиваний:
10
Добавлен:
30.04.2022
Размер:
1.86 Mб
Скачать

данных - это попытка задать представление логических связей между данными. Выполняемая экспертом обработка знаний строится на базе огромных запасов информации, представленных в самой различной форме. При этом часть информации может быть неполной.

По функциональному назначению экспертные системы можно разделить на следующие типы:

1)Мощные экспертные системы, рассчитанные на узкий круг пользователей (системы управления сложным технологическим оборудованием, экспертные системы ПВО). Такие системы обычно работают в реальном масштабе времени и являются очень дорогими.

2)Экспертные системы, рассчитанные на широкий круг пользователей. К ним можно отнести системы медицинской диагностики, сложные обучающие системы. База знаний этих систем стоит недешево, так как содержит уникальные знания, полученные от специалистов экспертов.

3)Экспертные системы с небольшим числом правил и сравнительно недорогие. Эти системы рассчитаны на массового потребителя (системы, облегчающие поиск неисправностей в аппаратуре). Применение таких систем позволяет обойтись без высококвалифицированного персонала, уменьшить время поиска и устранения неисправностей. Базу знаний такой системы можно дополнять и изменять, не прибегая к помощи разработчиков системы.

Вних обычно используются знания из различных справочных пособий и технической документации.

4)Простые экспертные системы индивидуального использования. Часто изготавливаются самостоятельно. Применяются в ситуациях, чтобы облегчить повседневную работу. Пользователь, организовав правила в некоторую базу знаний, создает на ее основе свою экспертную систему. Такие системы находят применение в юриспруденции, коммерческой деятельности, ремонте несложной аппаратуре.

Знания специалистов в конкретной области можно разделить на формализованные (точные) и неформализованные (неточные).

Неформализованные знания являются результатом обобщения многолетнего опыта работы и интуиции специалистов. Они обычно

131

представляют собой многообразие эвристических приемов и правил, не отражаемых в книгах.

Традиционно программирование в качестве основы для разработки программ используют алгоритм, то есть формализованные знания. Экспертные системы обладают следующими особенностями:

1)Алгоритм решения неизвестен заранее. Он строится самой экспертной системой в процессе решения.

2)Ясность получаемых решений, то есть способность экспертной системы объяснять получаемое решение.

3)Способность экспертной системы к анализу и объяснению своих действий.

4)Способность приобретения новых знаний от пользователя - эксперта, незнающего программирования.

5)Обеспечения дружественного естественного языка при общении с пользователем, благодаря которому экспертная система позволяет не только решать поставленные задачи, но и обучать решению соответствующих задач.

Знания и их представление При изучении интеллектуальных систем традиционно возникает

вопрос - что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ.

Данные - это отдельные факты, характеризующие объекты, процессы явления в предметной области, а также их свойства.

При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы:

данные как результат измерений и наблюдений;

данные на материальных носителях информации (таблицы, протоколы, справочники):

модели (структуры) данных в виде диаграмм, графиков, функций;

данные в компьютере на языке описания данных;

базы данных на машинных носителях.

Знания связаны с данными, основываются на них, но представляют результат мыслительной деятельности человека,

132

обобщают его опыт, полученный в ходе выполнения какой-либо практической деятельности. Они получаются эмпирическим путем.

Знания - это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области.

При обработке на ЭВМ знания трансформируются аналогично данным:

знания в памяти человека как результат мышления;

материальные носители знаний (учебники, методические пособия);

поле знаний - условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих;

знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы);

базы знаний.

Если рассматривать знания с точки зрения решения задач, их удобно разделить на две большие категории: факты и эвристику.

Факты - это хорошо известные для данной предметной области обстоятельства, освещенные в учебниках и литературе.

Эвристика основывается на опыте специалиста. Сюда входят способы комплектования знаний, способы удаления бесполезных знаний, способы использования нечеткой информации.

Знания, кроме того, можно разбить на факты и правила. В данном случае под фактами понимаются значения типа: “А это “А” - определение”. Они хранятся в базах данных. Под правилами подразумеваются знания типа: “Если…, то ….”. Кроме них существуют так называемые метазнания (знания о знаниях). Это понятие необходимо для управления базой знаний, логическим выводом и обучением. Знания обычно имеют классификацию, характерную не только для фактов, но и для правил.

133

Инструменты построения экспертных систем В настоящее время существует очень много средств для

построения экспертных систем. Они отличаются:

1)Способом представления знаний.

2)Механизмами получения решений.

3)Интерфейсами общения с пользователями.

4)Размерами разрабатываемых баз знаний.

5)Используемым оборудованием и его стоимостью.

Из средств, которые сейчас нашли применение, можно создать классификацию:

1)Символьные языки, ориентированные на создание экспертных систем и систем искусственного интеллекта (LISP, SMALLTALK). Содержит минимальные специальные средства для создания экспертных систем. С помощью них можно проводить обычное программирование.

2)Языки инженерных знаний (языки высокого уровня, ориентированные на построение экспертных систем: PROLOG, OPS - 5). Данные языки включают в себя, кроме способов представления знаний, встроенный механизм поиска и вывода. Требует привлечения инженера по знаниям и программиста.

3)Системы автоматической разработки экспертных систем, ориентированные на знания: ART, TIMM. Содержит несколько разнородных средств представления знаний, богатый набор организации интерфейсов, встроенный механизм вывода.

4)Оболочки экспертных систем: EMYCIN, ЭКСПЕРТ. Они составляют 50 - 60% всех экспертных систем. Трудозатраты по созданию на них конкретных систем минимальны, так как они представляют собой пустую экспертную систему. Необходимо, чтобы область знаний подходила к данной оболочке.

134

Рис. 7.20. Структура идеальной экспертной системы

Механизм логического вывода включает в себя рабочую память и механизм логического вывода.

Рабочая память (база данных) используется для хранения промежуточных результатов.

Экспертная система работает в двух режимах:

1)Режим приобретения знаний (определение, модификация, дополнение).

2)Режим решения задач. Используются пользователем экспертные системы. В этом режиме данные о задаче обрабатываются пользовательским интерфейсом и после соответствующей кодировки передаются в блоки экспертной системы.

Результаты обработки полученных данных поступают в модуль советов и объяснений и после перекодировки на язык, близкий к естественному, выдаются в виде советов, объяснений и замечаний. Если ответ не понятен пользователю, он может потребовать от экспертной системы объяснения его получения.

135

В разработке экспертной системы участвуют представители следующих специальностей:

1)эксперт - специалист в конкретной предметной области

2)инженер по знаниям - специалист по разработке экспертных

систем

3)программист - специалист по разработке инструментальных средств создания экспертной системы.

Эксперт определяет соответствующий круг знаний, обеспечивает их полноту и правильность введения экспертной системы.

Инженер по знаниям выявляет совместно с экспертом структурированность знаний, выбор инструментального средства, программирует стандартные функции, которые будут использоваться

вправилах экспертной системы.

Программист разрабатывает инструментальные средства, содержащие все компоненты создания экспертных систем. Осуществляет сопряжение экспертных систем с пользователем. В использовании экспертных систем участвуют специалисты:

. Конечный пользователь, имеет возможность только использования экспертных систем.

. Клерк, может добавлять, модифицировать базу знаний экспертной системы.

Способы описания знаний При разработке экспертных систем наибольшее применение

нашли следующие способы описания знаний:

логические модели

сетевые модели

продукционные модели

фреймовые модели

Логические модели. В основе их описания лежит формальная система с четырьмя элементами:

М=< Т, Р, А, В > ,

где Т - множество базовых элементов различной природы с соответствующими процедурами,

136

Р - множество синтаксических правил. С их помощью из элементов Т образуют синтаксически правильные совокупности. Процедура П(Р) определяет, является ли эта совокупность правильной.

А - подмножество множества Р, называемых аксиомами. Процедура П(А) дает ответ на вопрос о принадлежности к множеству А.

В- множество правил вывода. Применяя их к элементам А, можно получить новые синтаксически правильные совокупности, к которым можно применить эти правила снова. Процедура П(В) определяет для каждой синтаксически правильной совокупности, является ли она выводимой. Наиболее приемлем данный тип моделей для знаний типа геометрии.

Вданной системе множество А вводится в базу знаний. В базу знаний вводятся также правила вывода. Используя данные базы знаний и условия поставленной задачи, можно определить, является ли поставленная задача синтаксически правильной совокупностью, то есть является ли она выводимой из данной базы знаний.

Сетевые модели. К сетевым моделям относятся знания, формально задаваемые в следующем виде:

H= <I, C1, C2, …..Cn, G>,

где I - множество единиц информации,1,……Cn - множество типов связи между информационными единицами,

G - задание связи из данного набора.

В зависимости от типа связи семантические сети подразделяют

на:

классифицирующие,

функциональные,

сценарии.

В классифицирующие сети вводят различные иерархические отношения между единицами информации. Такие отношения используются в биологии. Функциональные сети описывают процедуры вывода одних информационных единиц через другие. В сценариях используют казуальные отношения, то есть типа средства -

137

результат, орудие - действие.

Продукционные модели. Данный тип модели является промежуточным между логическими и сетевыми моделями. Из логических моделей здесь заимствована идея правил вывода, которая называется продукцией, из сетевых - описание знаний в виде семантической сети. Данный тип представления знаний является сейчас наиболее широко используемым. При работе продукционные модели в результате применения правил вывода происходит трансформация семантической сети за счет смены фрагментов и исключения добавления элементов.

Фреймовые модели. Во фреймовых моделях жестко фиксируется структура представления информации, называемая протофреймом. Протофрейм - структурная единица информации, из которой порождаются другие типы информации. Он состоит из:

Имя фрейма Имя слота (значение слота)

.

.

.

Имя слота (значение слота).

Продукционные модели Продукционная модель, или модель, основанная на правилах,

позволяет представить знания в виде предложений типа: Если (условие), то (действие).

Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием - действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).

При использовании продукционной модели база знании состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения - к данным). Данные - это исходные факты, на основании которых

138

запускается машина вывода - программа, перебирающая правила из базы.

Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.

Имеется большое число программных средств, реализующих продукционный подход (язык OPS 5; "оболочки" или "пустые" ЭС - EXSYS, ЭКСПЕРТ; инструментальные системы ПИЭС и СПЭИС и др.), а также промышленных ЭС на его основе - ФИАКР и др.

В общем виде продукция может быть представлена выражением следующего вида:

; Q ; P ; A => B ; N ,

где I - имя продукции. В качестве имени может выступать порядковый номер или выражение из символов, отражающее суть данной продукции – элемент, характеризующий сферу применения. Он позволяет разделить знания на области, что экономит время поиска нужных знаний.

А => В - основной элемент продукции, называемый ядром.

Р - условие применения ядра продукции. Обычно Р представляется логическим выражениям. Если выражение Р - ложно, то ядро не может быть исполнено. - описание постусловия продукции. Здесь описываются действия и процедуры, которые необходимо выполнить после реализации.

Все продукции объединяют в систему. В системе продукций должны быть специальные процедуры управления продукциями, с помощью которых производится выбор продукции и актуализация имеющихся продукций.

Управление системой продукции Обычно условия применимости выполняются сразу для

нескольких продукций. В этом случае возникают проблемы выбора конкретной продукции для реализации. Возможно два пути решения данной проблемы: централизованный и децентрализованный.

При централизованном методе решение об актуализации принимается специальной системой управления. При

139

децентрализованном - определяются складывающиеся в данный момент ситуации. Рассмотрим несколько стратегий управления выбором продукции:

. Принцип “стопки книг”. Основная идея состоит в том, что наиболее часто используемая продукция является наиболее полезной. Готовые продукции образуют “стопку”, в которой порядок определяется наибольшей частотой ее использования в прошлом. Подобный принцип управления удобен при оценке исполнения. Его целесообразно применять при относительной неуязвимости продукции друг от друга.

. Принцип наиболее длинного условия. Принцип заключается в выборе той продукции, у которой наиболее длинное условие выполнения ядра. Он опирается на соображения здравого смысла. Частные правила, относящиеся к узкому классу ситуаций важнее общих правил. Принцип целесообразно применять в случаях, когда знания и продукции хорошо структурированы и заданы соотношения

частное - общее ”.

3.Принцип метапродукции. Основан на идее ввода в систему продукции управления продукциями, задача которых организовать выбор продукции из фронта готовых к актуализации.

4.Принцип “классной доски”. При реализации этого принципа в экспериментальной системе выделяют специальное рабочее поле - аналог классной доски. На этой доске параллельно выполняются процессы, находящие информацию, запускающую их, туда же они заносят результаты своей работы, которые могут быть полезны для других процессов. Однозначного выбора продукции часто не бывает, поэтому принцип “классной доски” может комбинироваться с другими методами, например, с принципом метапродукции.

5.Принцип приоритетного выбора. Связан с введением статистических и динамических приоритетов на продукции. Статистические приоритеты формируются заранее, а динамические в процессе работы.

6.Логический метод выбора. При этом методе существуют два типа управления системой продукции: прямой и обратный. В прямом случае поиск идет от левых частей продукции, то есть проверки

140