
- •2. События. Сумма событий, произведение, разность
- •Сумма событий, произведение, разность
- •3. Условная вероятность.
- •4. Формула полной вероятности, формула Байеса. Формула полной вероятности
- •Формула Байеса
- •5. Схема испытаний Бернулли.
- •6. Теорема Пуассона.
- •7. Локальная теорема Лапласа.
- •8. Интегральная теорема Лапласа. Отклонение относительной частоты от постоянной вероятности. Интегральная теорема Лапласа
- •Отклонение относительной частоты от постоянной вероятности
- •9. Дискретные случайные величины. Закон распределения дискретной случайной величины (ряд распределения, многоугольник распределения).
- •Дискретные случайные величины
- •Закон распределения дискретной случайной величины (ряд распределения, многоугольник распределения)
- •10. Функция распределения вероятностей и ее свойства. Функция распределения вероятностей
- •Свойства функции
- •11. Плотность распределения вероятностей и ее свойства.
- •12. Математическое ожидание и его свойства. Математическое ожидание
- •Свойства математического ожидания
- •13. Дисперсия и ее свойства. Среднеквадратическое отклонение. Дисперсия
- •Свойства дисперсии
- •Среднеквадратическое отклонение
- •Пример дисперсии
- •14. Мода. Медиана, начальные и центральные моменты. Мода
- •Медиана
- •Начальные и центральные моменты
- •15. Биномиальное распределение.
- •16. Распределение Пуассона.
- •17. Геометрическое распределение.
- •18. Непрерывные случайные величины. Плотность распределения. Функция распределения.
- •19. Числовые характеристики непрерывной случайной величины. Математическое ожидание
- •Дисперсия
- •20. Коэффициент асимметрии. Эксцесс.
- •25. Закон больших чисел. Неравенство Чебышева. Теорема Чебышева.
- •26. Усиленный закон больших чисел, теорема Бернулли. Теорема Пуассона.
- •27. Центральная предельная теорема.
- •28. Многомерные случайные величины. Функция распределения и плотность распределения.
- •33. Задачи математической статистики.
- •34. Выборка. Типы выбора. Виды выбора. Свойства выбора.
- •35. Вариационный ряд и его свойства. Гистограмма
- •36. Эмпирическая функция распределения.
- •37. Выборочные числовые характеристики: выборочная средняя, выборочная дисперсия, исправленная выборочная дисперсия.
- •38. Точечное оценивание неизвестного параметра. Свойства оценок: состоятельность, несмещенность, эффективность.
- •39. Интервальные оценки. Доверительный интервал. Доверительный интервал для оценки математического ожидания нормально распределенной случайной величины.
- •40. Метод моментов.
- •41. Метод максимального правдоподобия.
- •42. Метод наименьших квадратов.
- •43. Проверка статистических гипотез. Ошибки первого и второго рода.
- •44. Критерий согласия Пирсона 𝜒2.
- •45. Критерий Стьюдента.
- •Сравнение выборочного среднего с заданным значением
- •Сравнение двух выборочных средних при известных дисперсиях
- •Сравнение двух выборочных средних при неизвестных равных дисперсиях
- •Сравнение двух выборочных средних при неизвестных неравных дисперсиях
- •Сравнение двух выборочных средних в связанных выборках
- •Сравнение разности средних с заданным значением
- •46. Точный критерий Фишера.
- •47. Непараметрический критерий Вилкоксона.
Сравнение двух выборочных средних в связанных выборках
Заданы
две выборки одинаковой длины
.
Дополнительные предположения:
обе выборки простые и нормальные;
выборки связные, то есть элементы
соответствуют одному и тому же объекту, но измерения сделаны в разные моменты (например, до и после обработки).
Нулевая гипотеза (средние в двух выборках равны).
Сравнение
выборочных средних в связанных выборках
ничем не отличается от сравнения среднего
разности
с нулём.
Сравнение разности средних с заданным значением
Заданы две выборки .
Дополнительное предположение:
обе выборки простые и нормальные;
равенство дисперсий может предполагаться либо нет — в зависимости от этого применяется один из критериев, описанных выше.
Нулевая
гипотеза
(средние в двух выборках отличаются на
заданную величину).
Модифицированная
первая выборка
сравнивается с исходной второй выборкой
с помощью одного из критериев, описанных
выше.
46. Точный критерий Фишера.
Точный критерий Фишера – это критерий, который используется для сравнения двух и более относительных показателей, характеризующих частоту определенного признака, имеющего два значения. Исходные данные для расчета точного критерия Фишера обычно группируются в виде четырехпольной таблицы, но могут быть представлены и многопольной таблицей.
Точный критерий Фишера в основном применяется для сравнения малых выборок. Этому есть две весомые причины. Во-первых, вычисления критерия довольно громоздки и могут занимать много времени или требовать мощных вычислительных ресурсов. Во-вторых, критерий довольно точен (что нашло отражение даже в его названии), что позволяет его использовать в исследованиях с небольшим числом наблюдений.
Особое место отводится точному критерию Фишера в медицине. Это важный метод обработки медицинских данных, нашедший свое применение во многих научных исследованиях. Благодаря ему можно исследовать взаимосвязь определенных фактора и исхода, сравнивать частоту патологических состояний между разными группами пациентов и т.д.
1 Сравниваемые переменные должны быть измерены в номинальной шкале и иметь только два значения, например, артериальное давление в норме или повышено, исход благоприятный или неблагоприятный, послеоперационные осложнения есть или нет.
2 Критерий подходит для сравнения очень малых выборок: точный критерий Фишера может применяться для анализа четырехпольных таблиц в случае значений ожидаемого явления менее 10, что является ограничением для применения критерия хи-квадрат Пирсона.
3 Точный критерий Фишера бывает односторонним и двусторонним. При одностороннем варианте точно известно, куда отклонится один из показателей. Например, во время исследования сравнивают, сколько пациентов выздоровело по сравнению с группой контроля. Предполагают, что терапия не может ухудшить состояние пациентов, а только либо вылечить, либо нет. Двусторонний тест является предпочтительным, так как оценивает различия частот по двум направлениям. То есть оценивается верятность как большей, так и меньшей частоты явления в экспериментальной группе по сравнению с контрольной группой.
Аналогом точного критерия Фишера является Критерий хи-квадрат Пирсона, при этом точный критерий Фишера обладает более высокой мощностью, особенно при сравнении малых выборок, в связи с чем в этом случае обладает преимуществом.
Точный критерий Фишера рассчитывается по следующей формуле:
где N - общее число исследуемых в двух группах;! - факториал, представляющий собой произведение числа на последовательность чисел, каждое из которых меньше предыдущего на 1 (например, 4! = 4 · 3 · 2 · 1)
В результате вычислений находим, что P = 0,0137.
Достоинством метода является соответствие полученного критерия точному значению уровня значимости p. То есть, полученное в нашем примере значение 0,0137 и есть уровень значимости различий сравниваемых групп по частоте развития ВПР плода. Необходимо лишь сопоставить данное число с критическим уровнем значимости, обычно принимаемым в медицинских исследованиях за 0,05.
Если значение точного критерия Фишера больше критического, принимается нулевая гипотеза и делается вывод об отсутствии статистически значимых различий частоты исхода в зависимости от наличия фактора риска.
Если значение точного критерия Фишера меньше критического, принимается альтернативная гипотеза и делается вывод о наличии статистически значимых различий частоты исхода в зависимости от воздействия фактора риска.
В нашем примере P < 0,05, в связи с чем делаем вывод о наличии прямой взаимосвязи курения и вероятности развития ВПР плода. Частота возникновения врожденной патологии у детей курящих женщин статистически значимо выше, чем у некурящих.