
- •2. События. Сумма событий, произведение, разность
- •Сумма событий, произведение, разность
- •3. Условная вероятность.
- •4. Формула полной вероятности, формула Байеса. Формула полной вероятности
- •Формула Байеса
- •5. Схема испытаний Бернулли.
- •6. Теорема Пуассона.
- •7. Локальная теорема Лапласа.
- •8. Интегральная теорема Лапласа. Отклонение относительной частоты от постоянной вероятности. Интегральная теорема Лапласа
- •Отклонение относительной частоты от постоянной вероятности
- •9. Дискретные случайные величины. Закон распределения дискретной случайной величины (ряд распределения, многоугольник распределения).
- •Дискретные случайные величины
- •Закон распределения дискретной случайной величины (ряд распределения, многоугольник распределения)
- •10. Функция распределения вероятностей и ее свойства. Функция распределения вероятностей
- •Свойства функции
- •11. Плотность распределения вероятностей и ее свойства.
- •12. Математическое ожидание и его свойства. Математическое ожидание
- •Свойства математического ожидания
- •13. Дисперсия и ее свойства. Среднеквадратическое отклонение. Дисперсия
- •Свойства дисперсии
- •Среднеквадратическое отклонение
- •Пример дисперсии
- •14. Мода. Медиана, начальные и центральные моменты. Мода
- •Медиана
- •Начальные и центральные моменты
- •15. Биномиальное распределение.
- •16. Распределение Пуассона.
- •17. Геометрическое распределение.
- •18. Непрерывные случайные величины. Плотность распределения. Функция распределения.
- •19. Числовые характеристики непрерывной случайной величины. Математическое ожидание
- •Дисперсия
- •20. Коэффициент асимметрии. Эксцесс.
- •25. Закон больших чисел. Неравенство Чебышева. Теорема Чебышева.
- •26. Усиленный закон больших чисел, теорема Бернулли. Теорема Пуассона.
- •27. Центральная предельная теорема.
- •28. Многомерные случайные величины. Функция распределения и плотность распределения.
- •33. Задачи математической статистики.
- •34. Выборка. Типы выбора. Виды выбора. Свойства выбора.
- •35. Вариационный ряд и его свойства. Гистограмма
- •36. Эмпирическая функция распределения.
- •37. Выборочные числовые характеристики: выборочная средняя, выборочная дисперсия, исправленная выборочная дисперсия.
- •38. Точечное оценивание неизвестного параметра. Свойства оценок: состоятельность, несмещенность, эффективность.
- •39. Интервальные оценки. Доверительный интервал. Доверительный интервал для оценки математического ожидания нормально распределенной случайной величины.
- •40. Метод моментов.
- •41. Метод максимального правдоподобия.
- •42. Метод наименьших квадратов.
- •43. Проверка статистических гипотез. Ошибки первого и второго рода.
- •44. Критерий согласия Пирсона 𝜒2.
- •45. Критерий Стьюдента.
- •Сравнение выборочного среднего с заданным значением
- •Сравнение двух выборочных средних при известных дисперсиях
- •Сравнение двух выборочных средних при неизвестных равных дисперсиях
- •Сравнение двух выборочных средних при неизвестных неравных дисперсиях
- •Сравнение двух выборочных средних в связанных выборках
- •Сравнение разности средних с заданным значением
- •46. Точный критерий Фишера.
- •47. Непараметрический критерий Вилкоксона.
34. Выборка. Типы выбора. Виды выбора. Свойства выбора.
Выборка или выборочная совокупность — часть генеральной совокупности элементов, которая охватывается экспериментом (наблюдением, опросом).
Генеральная совокупность — совокупность всех объектов (единиц), относительно которых предполагается делать выводы при изучении конкретной задачи.
Характеристики выборки:
Качественная характеристика выборки — что именно мы выбираем и какие способы построения выборки мы для этого используем.
Количественная характеристика выборки — сколько случаев выбираем (объём выборки).
Необходимость выборки:
Объект исследования очень обширный. Например, потребители продукции глобальной компании — огромное количество территориально разбросанных рынков.
Существует необходимость в сборе вторичной информации.
Типы выборок
Выборки делятся на два типа:
вероятностные
невероятностные
1. Вероятностные выборки 1.1 Случайная выборка (простой случайный отбор) Такая выборка предполагает однородность генеральной совокупности, одинаковую вероятность доступности всех элементов, наличие полного списка всех элементов. При отборе элементов, как правило, используется таблица случайных чисел. 1.2 Механическая (систематическая) выборка Разновидность случайной выборки, упорядоченная по какому-либо признаку (алфавитный порядок, номер телефона, дата рождения и т.д.). Первый элемент отбирается случайно, затем, с шагом ‘n’ отбирается каждый ‘k’-ый элемент. Размер генеральной совокупности, при этом – N=n*k 1.3 Стратифицированная (районированная) Применяется в случае неоднородности генеральной совокупности. Генеральная совокупность разбивается на группы (страты). В каждой страте отбор осуществляется случайным или механическим образом. 1.4 Серийная (гнездовая или кластерная) выборка При серийной выборке единицами отбора выступают не сами объекты, а группы (кластеры или гнёзда). Группы отбираются случайным образом. Объекты внутри групп обследуются сплошняком.
2.Невероятностные выборки Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д.. 2.1. Квотная выборка Изначально выделяется некоторое количество групп объектов. Для каждой группы задается количество объектов, которые должны быть обследованы. Количество объектов, которые должны попасть в каждую из групп, задается, чаще всего, либо пропорционально заранее известной доле группы в генеральной совокупности, либо одинаковым для каждой группы. Внутри групп объекты отбираются произвольно. Квотные выборки используются в маркетинговых исследованиях достаточно часто. 2.2. Метод снежного кома Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов. 2.3 Стихийная выборка Опрашиваются наиболее доступные респонденты. Типичные примеры стихийных выборок – опросы в газетах/журналах, анкеты, отданные респондентам на самозаполнение, большинство интернет-опросов. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов. 2.4 Выборка типичных случаев Отбираются единицы генеральной совокупности, обладающие средним (типичным) значением признака. При этом возникает проблема выбора признака и определения его типичного значения.
Виды выборки
Пусть случайная величина X принимает в выборке значение x1 - n1 раз, x2 – n2 раз, …, xn – nn раз, где n – объем выборки.
Варианты - наблюдаемые значения x1, x2,…, xn случайной величины X, принимаемые в выборке n1 раз, n2 раз, …, nn раз.
Частоты n1, n2 ,…, nn –. величины, показывающие, сколько раз встречается то или иное значение признака.
Относительные частоты - отношение частот к объему.
Вариационный ряд - то значения признака (или интервалы значений) и их частоты.
Статистический ряд последовательность частот или относительных частот, записанных в порядке возрастания. Различные значения признака X называются вариантами.
Замечание: В теории вероятности под распределениями понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — соответствие между наблюдаемыми вариантами и их частотами.
Расположение, упорядочение вариантов в порядке возрастания (убывания) называется ранжированием вариантов ряда.
При составлении выборки можно поступать двояко: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен, либо не возвращен в генеральную совокупность.
В соответствии со сказанным, выборки подразделяют на повторные и бесповторные.
Повторная выборка – каждый отобранный объект перед выбором следующего возвращается в генеральную совокупность;
Бесповторная выборка – отобранный объект в генеральную совокупность не возвращается. На практике обычно пользуются бесповторным случайным отбором.
Замечание: Для того, чтобы по исследованию выборки можно было сделать выводы о поведении интересующего признака генеральной совокупности, нужно, чтобы выборка правильно представляла пропорции генеральной совокупности, то есть была репрезентативной (представительной).
Выборка будет репрезентативной, если ее осуществить случайно, когда все объекты генеральной совокупности имеют одинаковую вероятность быть отображенными и отбор одного объекта не влияет на вероятность отбора другого объекта совокупности.
Учитывая закон больших чисел, можно утверждать, что это условие выполняется, если каждый объект выбран случайно, причем для любого объекта вероятность попасть в выборку одинакова.
Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.