Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭВМ (экз.).docx
Скачиваний:
32
Добавлен:
01.04.2022
Размер:
11.92 Mб
Скачать

1.14. Архитектура Микроконтроллера. Структура типовой эвм.

https://www.youtube.com/watch?v=8V1DohH-d3Q

Основное назначение ядра процессора - это обеспечение правильного выполнения программы. Поэтому процессор должен быть в состоянии получать доступ к памяти, выполнять расчёты, управлять периферией и обрабатывать прерывания. (То, что вы видите на рисунке, это и есть ядро процессора).

Инструкции программы в памяти (блок Flash Program Memory, далее - FPM) выполняются с одноуровневой конвейеризацией. Пока одна инструкция выполняется, следующая инструкция программы предварительно считывается из памяти (из FPM). Эта концепция позволяет инструкции выполняться за один такт. Память программы (блок FPM) в системе - это перепрограммируемая флэш-память.

Блок регистров содержит 32 восьмиразрядных регистра общего назначения (далее - РОН) с быстрым доступом (на рисунке это 32 х 8 General Purpose Registrers). Доступ к регистру выполняется за один такт. Это позволяет арифметико-логическому устройству (АЛУ) - Arithmetic Logic Unit (ALU) также выполнять операции за один такт. В общем случае при выполнении операции АЛУ два операнда берутся из файлового регистра (Register File), выполняется операция, а результат записывается обратно в файловый регистр. И всё это за один такт.

Шесть из 32 регистров могут использоваться как 16-разрядные регистры косвенной адресации для указания на область адресов данных, обеспечивая эффективное вычисление адреса. На рисунке это показано стрелкой с надписью Indirect address (косвенная адресация). То есть 6 из 32 регистров общего назначения можно использовать как указатели адреса для доступа к данным в области Data SRAM.

Один из этих указателей адреса можно также использовать как указатель адреса для просмотра таблиц в программной памяти (FPM). Эти дополнительные функциональные регистры, которые являются 16-разрядными регистрами X-, Y- и Z-, будут описаны далее.

АЛУ поддерживает арифметические и логические операции между регистрами или между константой и регистром. Операция с одним регистром также может быть выполнена в АЛУ. После арифметической операции регистр состояния (Status Register) обновляется для отображения сведений о результате операции.

Выполнение программы обеспечивается условными и безусловными переходами и вызовами инструкций, способными непосредственно обращаться ко всему пространству адресов. Большинство инструкций AVR имеют формат одиночного 16-разрядного слова. Каждый адрес памяти программы содержит 16-или 32-разрядную инструкцию.

При генерации прерывания и вызове подпрограмм адрес возврата счетчика команд (Program Counter, сокращённо PC) сохраняется в стеке. Стек эффективно распределяется среди общих данных в SRAM, и, следовательно, размер стека ограничивается только общим размером SRAM и использованием SRAM. Все пользовательские программы должны инициализировать SP в подпрограмме сброса (перед выполнением подпрограмм или прерываний). Указатель стека (Stack Pointer, сокращённо SP) доступен для чтения и записи в пространстве ввода-вывода. К статическому ОЗУ данных можно легко получить доступ через пять различных режимов адресации архитектуры AVR.

Всё пространство памяти в архитектуре AVR является линейным и представляет собой обычные таблицы памяти.

Гибкий модуль прерываний содержит свои управляющие регистры в пространстве ввода-вывода (I/O space) с дополнительным битом глобального разрешения прерываний (Global Interrupt Enable) в регистре статуса (Status Register). Все прерывания имеют отдельный вектор прерываний (Interrupt Vector) в таблице векторов прерываний (Interrupt Vector table). Прерывания имеют приоритет в соответствии с их положением в таблице векторов прерываний. Чем ниже адрес вектора прерывания, тем выше приоритет.

Пространство памяти ввода-вывода содержит 64 адреса для периферийных функций центрального процессора (CPU) в качестве регистров управления (Control Registers), SPI и других функций ввода-вывода. Память ввода-вывода может быть доступна непосредственно, или как размещение пространства данных (Data Space), находящееся за регистром файла (Register File), 0x20 - 0x5F.