- •Определение ос. Назначение и функции операционной системы. Место ос в структуре вычислительной системы.
- •3, Понятие ресурса. Основные ресурсы вычислительной системы. Управление ресурсами.
- •4, Критерии эффективности и классы ос
- •5, Функциональные компоненты ос персонального компьютера
- •6, Понятие интерфейса прикладного программирования
- •7, Системные вызовы
- •8, Прерывания (понятие, классификация, обработка прерываний)
- •9, Требования, предъявляемые к современным ос
- •10, Виртуализация. Гипервизор 1 и 2 типа. Контейнеры
- •11, Архитектура ос. Ядро и вспомогательные модули
- •12, Классическая архитектура ос. Монолитные и многослойные ос.
- •13, Микроядерная архитектура ос
- •14. Процессы и потоки. Состояния потока
- •15. Планирование и диспетчеризация потоков, моменты перепланировки.
- •16. Алгоритм планирования, основанный на квантовании.
- •17. Приоритетное планирование.
- •18. Алгоритмы планирования в ос пакетной обработки: «первым пришел – первым обслужен», «кратчайшая задача – первая», «наименьшее оставшееся время выполнения».
- •19. Алгоритмы планирования в интерактивных ос: циклическое, приоритетное, гарантированное, лотерейное, справедливое планирование.
- •20. Алгоритм планирования Windows nt.
- •21. Алгоритмы планирования Linux: о(1), cfs.
- •22. Синхронизация процессов и потоков: цели и средства синхронизации.
- •23. Ситуация состязаний (гонки). Способы предотвращения.
- •24. Способы реализации взаимных исключений: блокирующие переменные, критические секции, семафоры.
- •25. Взаимные блокировки. Условия, необходимые для возникновения тупика.
- •26. Предотвращение взаимоблокировки. Алгоритм банкира для одного вида ресурсов.
- •27. Предотвращение взаимоблокировки. Алгоритм банкира для нескольких видов ресурсов.
- •28. Синхронизирующие объекты ос: системные семафоры, мьютексы, события, сигналы, барьеры, ждущие таймеры.
- •29. Организация обмена данными между процессами (каналы, разделяемая память, почтовые ящики, сокеты).
- •30. Функции ос по управлению памятью.
- •31. Алгоритмы распределения памяти без использования внешних носителей (фиксированные, динамические, перемещаемые разделы).
- •32. Понятие виртуальной памяти
- •33.Страничное распределение памяти.
- •34. Таблицы страниц для больших объемов памяти.
- •35.Сегментное распределение памяти.
- •36. Сегментно-страничное распределение памяти.
- •37. Задачи ос по управлению файлами и устройствами.
- •38. Многослойная модель подсистемы ввода-вывода.
- •39. Физическая организация жесткого диска. (там еще про hdd, ssd устройства добавление в вопрос) (я пробежался глазами тут вроде нет)
- •40. Файловая система. Определение, состав, типы файлов. Логическая организация файловой системы.
- •41. Физическая организация и адресация файлов.
- •42. Fat. Структура тома. Формат записи каталога. Fat12, fat16, fat32.
- •43. Ufs: структура тома, адресация файлов, каталоги, индексные дескрипторы.
- •44. Ntfs: структура тома, типы файлов, организация каталогов.
- •45. Файловые операции. Процедура открытия файла.
- •46. Организация контроля доступа к файлам. Контроль доступа к файлам на примере Unix
- •47. Отказоустойчивость файловых систем.
- •48. Избыточные дисковые подсистемы raid.
- •49. Многоуровневые драйверы.
- •50. Дисковый кэш.
11, Архитектура ос. Ядро и вспомогательные модули
ОС состоит из ядра и вспомогательных модулей.
Ядро выполняет:
- базовые функции ОС (управление процессами, памятью, устройствами ввода/вывода;
- функции, решающие внутрисистемные задачи организации вычислительного процесса, (переключение контекстов, загрузка/выгрузка страниц, обработка прерываний).
Приложения могут обращаться к ядру с запросами (системными вызовами) для выполнения тех или иных действий. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования – API. Кроме того, одним из определяющих свойств ядра является работа в привилегированном режиме.
Вспомогательные модули ОС обычно подразделяются на следующие группы:
- утилиты – программы, решающие отдельные задачи управления и сопровождения компьютерной системы, например, программы сжатия диска, архивирования и т.д.
- системные обрабатывающие программы – текстовые и графические редакторы, компиляторы, компоновщики, отладчики;
- программы дополнительных услуг – специальный вариант пользовательского интерфейса, калькулятор, игры;
- библиотеки процедур – библиотека математических функций, функций ввода/вывода и т.д.
12, Классическая архитектура ос. Монолитные и многослойные ос.
Пользовательский режим:
- Утилиты ОС
- Системные обрабатывающие программы
- Приложения пользователей
Привилегированный режим: Ядро ОС
Режим супервизора – самый привилегированный уровень. Здесь работает ядро
Еще более привилегированный уровень, мб использован для драйверов, на практике редко задействован
Уровень выполнения чуть более привилегированного кода, например программ с доступом к операциям ввода-вывода
Пользовательский уровень – наименее привилегированный. Здесь работают прикладные программы.
Монолитная структура ОС
Вся ОС работает как единая программа в режиме ядра. Монолитная ОС написана как набор процедур, связанных в одну большую исполняемую программу. Каждая процедура имеет возможность при необходимости вызвать другую.
Могут быть структурированными:
1. Главная программа, которая вызывает требуемые сервисные процедуры.
2. Набор сервисных процедур, реализующих системные вызовы.
3. Набор утилит, обслуживающих сервисные процедуры
Многоуровневые системы
Обобщением предыдущего подхода является организация ОС как иерархии уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты из уровня N-1. Нижним уровнем в таких системах обычно является аппаратура, верхним уровнем интерфейс пользователя. Прикладные программы или модули самой операционной системы передают запросы вверх и вниз по этим уровням.
Плюсы:
• Многоуровневые системы хорошо реализуются.
• Слоеные системы хорошо модифицируются.
Минусы:
• Многоуровневые системы сложны для разработки.
• Менее эффективны, чем монолитные.
13, Микроядерная архитектура ос
В микроядерной архитектуре в привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром. Микроядро защищено от остальных частей ОС и приложений. В состав микроядра обычно входят машинно-зависимые модули, а также модули, выполняющие базовые функции ядра по управлению процессами, обработке прерываний, управлению виртуальной памятью, пересылке сообщений и управлению устройствами ввода/вывода, которые практически невозможно выполнить в пользовательском режиме. Все остальные функции ядра оформляются в виде приложений, работающих в пользовательском режиме, которые теперь называются серверами ОС. Клиент, которым может быть либо другой компонент ОС, либо прикладная программа, запрашивает сервис, посылая сообщение на сервер. Микроядро, работающее в привилегированном режиме, доставляет сообщение нужному серверу, сервер выполняет операцию, после чего ядро возвращает результаты клиенту с помощью другого сообщения Поддержка этого механизма является одной из главных задач микроядра.
Основное достоинство микроядерной архитектуры – высокая степень модульности ядра ОС. Это существенно упрощает добавление в него новых компонентов. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра. В то же время, микроядерная архитектура существенно снижает производительность операционной системы.
Одна из проблем, возникающих при разработке микроядерной ОС – какие функции включать в микроядро, а какие выносить в пользовательское пространство. В идеальном случае микроядро может состоять только из средств передачи сообщений и аппаратно-зависимых модулей (так называемая модель экзоядра). Для повышения производительности ОС в состав микроядра могут входить и другие часто используемые функции. Минус микроядерной архитектуры - снижение производительности. Приложение обращается к микроядру, оно обращается к серверу, потом снова к микроядру.
