
- •1. Определение ос. Назначение и функции операционной системы. Место ос в структуре вычислительной системы.
- •3. Понятие ресурса. Основные ресурсы вычислительной системы. Управление ресурсами.
- •4. Критерии эффективности и классы ос.
- •8. Прерывания (понятие, классификация, обработка прерываний).
- •9. Требования, предъявляемые к современным ос.
- •10. Виртуализация. Гипервизор 1 и 2 типа. Контейнеры.
- •11. Архитектура ос. Ядро и вспомогательные модули.
- •12. Классическая архитектура ос. Монолитные и многослойные ос.
- •13. Микроядерная архитектура ос.
- •14. Процессы и потоки. Состояния потока
- •15. Планирование и диспетчеризация потоков, моменты перепланировки.
- •16. Алгоритм планирования, основанный на квантовании.
- •17. Приоритетное планирование.
- •18. Алгоритмы планирования в ос пакетной обработки: «первым пришел – первым обслужен», «кратчайшая задача – первая», «наименьшее оставшееся время выполнения».
- •Наименьшее оставшееся время выполнения
- •19. Алгоритмы планирования в интерактивных ос: циклическое, приоритетное, гарантированное, лотерейное, справедливое планирование.
- •Циклическое планирование (квантование)
- •Гарантированное планирование
- •Лотерейное планирование
- •Справедливое планирование
- •Приоритетное планирование
- •20. Алгоритм планирования Windows nt.
- •21. Алгоритмы планирования Linux: о(1), cfs.
- •22. Синхронизация процессов и потоков: цели и средства синхронизации.
- •23. Ситуация состязаний (гонки). Способы предотвращения.
- •24. Способы реализации взаимных исключений: блокирующие переменные, критические секции, мьютексы
- •25. Взаимные блокировки. Условия, необходимые для возникновения тупика.
- •26. Предотвращение взаимоблокировки. Алгоритм банкира для одного вида ресурсов.
- •27. Предотвращение взаимоблокировки. Алгоритм банкира для нескольких видов ресурсов.
- •28. Синхронизирующие объекты ос: системные семафоры, мьютексы, события, сигналы, барьеры, ждущие таймеры.
- •29. Организация обмена данными между процессами (каналы, разделяемая память, почтовые ящики, сокеты).
- •Каналы.
- •Разделяемая память
- •Почтовые ящики
- •Сокеты.
- •30. Функции ос по управлению памятью.
- •31. Алгоритмы распределения памяти без использования внешних носителей (фиксированные, динамические, перемещаемые разделы).
- •Распределение памяти динамическими разделами
- •32. Понятие виртуальной памяти Виртуализация памяти
- •Виртуальное адресное пространство - совокупность виртуальных адресов процесса. И эта совокупность может превышать объем физической памяти.
- •Структура виртуального адресного пространства
- •Виды виртуального адресного пространства:
- •33. Страничное распределение памяти.
- •34. Таблицы страниц для больших объемов памяти.
- •1 Многоуровневые таблицы страниц
- •2 Инвертированные таблицы страниц
- •35. Сегментное распределение памяти.
- •36. Сегментно-страничное распределение памяти.
- •37. Задачи ос по управлению файлами и устройствами.
- •38. Многослойная модель подсистемы ввода-вывода.
- •39. Физическая организация диска. Hdd, ssd устройства.
- •40. Файловая система. Определение, состав, типы файлов. Логическая организация файловой системы.
- •41. Физическая организация и адресация файлов.
- •42. Fat. Структура тома. Формат записи каталога. Fat12, fat16, fat32, exFat
- •43. Ufs, ext2: структура тома, адресация файлов, каталоги, индексные дескрипторы.
- •44. Ntfs: структура тома, типы файлов, организация каталогов.
- •45. Файловые операции. Процедура открытия файла.
- •46. Организация контроля доступа к файлам. Контроль доступа к файлам на примере Unix.
- •47. Отказоустойчивость файловых систем.
- •48. Избыточные дисковые подсистемы raid.
- •49. Многоуровневые драйверы.
- •50. Ускорение выполнения дисковых операций: традиционный дисковый кэш, кэш на основе механизма виртуальной памяти.
- •Классические задачи синхронизации: “производители-потребители”, “проблема обедающих философов”, “проблема спящего брадобрея”.
- •1. Официант
- •2. Иерархия вилок
- •3. Монитор
48. Избыточные дисковые подсистемы raid.
В основе средств обеспечения отказоустойчивости дисковой памяти лежит общий для всех отказоустойчивых систем принцип избыточности, и дисковые подсистемы RAID являются примером реализации этого принципа. Идея технологии RAID-массивов состоит в том, что для хранения данных используется несколько дисков, даже в тех случаях, когда для таких данных хватило бы места на одном диске.
При оценке эффективности RAID-массивов чаще всего используются следующие критерии:
-степень избыточности хранимой информации;
-производительность операций чтения и записи;
-степень отказоустойчивости.
RAID-массив может быть создан на базе нескольких обычных дисковых устройств, управляемых обычными контроллерами, в этом случае для организации управления всей совокупностью дисков в операционной системе должен быть установлен специальный драйвер. Существуют также различные модели дисковых систем, в которых технология RAID реализуется полностью аппаратными средствами, в этом случае массив дисков управляется общим специальным контроллером.
Различают несколько вариантов RAID-массивов, называемых также уровнями: RAID-0, RAID-1, RAID-2, RAID-3, RAID-4, RAID-5 и некоторые другие.
В логическом устройстве RAID-0 общий для дискового массива контроллер при выполнении операции записи расщепляет данные на блоки и передает их параллельно на все диски, при этом первый блок данных записывается на первый диск, второй — на второй и т. д.
Уровень RAID-0 не обладает избыточностью данных, а значит, не имеет возможности повысить отказоустойчивость. Если при считывании произойдет сбой, то данные будут безвозвратно испорчены. Более того, отказоустойчивость даже снижается, поскольку если один из дисков выйдет из строя, то восстанавливать придется все диски массива. Имеется еще один недостаток — если при работе с RAID-0 объем памяти логического устройства потребуется изменить, то сделать это путем простого добавления еще одного диска к уже имеющимся в RAID-массиве дискам невозможно без полного перераспределения информации по всему изменившемуся набору дисков.
Уровень RAID-1 реализует подход, называемый зеркальным копированием. Логическое устройство в этом случае образуется на основе одной или нескольких пар дисков, в которых один диск является основным, а другой диск (зеркальный) дублирует информацию, находящуюся на основном диске. Если основной диск выходит из строя, зеркальный продолжает сохранять данные, тем самым обеспечивается повышенная отказоустойчивость логического устройства. Все данные хранятся на логическом устройстве RAID-1 в двух экземплярах, в результате дисковое пространство используется лишь на 50%. (избыточность)
При внесении изменений в данные, расположенные на логическом устройстве RAID-1, контроллер (или драйвер) массива дисков одинаковым образом модифицирует и основной, и зеркальный диски. Удвоение количества операций записи снижает, хотя и не очень значительно, производительность дисковой подсистемы, поэтому во многих случаях наряду с дублированием дисков дублируются и их контроллеры. Такое дублирование помимо повышения скорости операций записи, обеспечивает большую надежность системы — данные на зеркальном диске останутся доступными не только при сбое диска, но и в случае сбоя дискового контроллера.
Код Хемминга обеспечивает исправление однократных ошибок и обнаружение двукратных. За счет нескольких дисков, куда записываются коррекции, обеспечивается избыточность.
Достоинством является повышение скорости дисковых операций по сравнению с производительностью одного диска.
Недостаток - минимальное количество дисков, при котором есть смысл его использовать - 7, только начиная с этого количества для него требуется меньше диском, чем для RAID-1.
В массивах RAID-3 используется расщепление данных на массиве дисков с выделением одного диска на весь набор для контроля четности. То есть если имеется массив из N дисков, то запись на N- 1 из них производится параллельно с побайтным расщеплением, а N-й диск используется для записи контрольной информации о четности. Диск четности является резервным. Если какой-либо диск выходит из строя, то Данные остальных дисков плюс данные о четности резервного диск огоа позволяют не только определить, какой из дисководов массива вышел из строя, но и восстановить утраченную информацию.
Минимальное количество дисков, необходимое для создания конфигурации RAID-3, равно трем. В этом случае избыточность достигает максимального значения — 33% (дальше снижается, для 33 дисков - меньше 1%)
Уровень RAID-3 позволяет выполнять одновременное чтение или запись данных на несколько дисков для файлов с длинными записями, однако следует подчеркнуть, что в каждый момент выполняется только один запрос на ввод-вывод, то есть RAID-3 позволяет распараллеливать ввод- вывод в рамках только одного процесса. Таким образом, уровень RAID-3 повышает как надежность, так и скорость обмена информацией.
В Raid-4 за счет распределения блоками может происходить независимый обмен с каждым диском.
В уровне RAID-5 используется метод, аналогичный RAID-4, но данные о контроле четности распределяются по всем дискам массива. При выполнении операции записи требуется в три раза больше оперативной памяти. Каждая команда записи инициирует ту же последовательность «считывание—модификация—запись» в нескольких дисках. Выигрыш в производительности при чтении.