
- •1. Определение ос. Назначение и функции операционной системы. Место ос в структуре вычислительной системы.
- •3. Понятие ресурса. Основные ресурсы вычислительной системы. Управление ресурсами.
- •4. Критерии эффективности и классы ос.
- •8. Прерывания (понятие, классификация, обработка прерываний).
- •9. Требования, предъявляемые к современным ос.
- •10. Виртуализация. Гипервизор 1 и 2 типа. Контейнеры.
- •11. Архитектура ос. Ядро и вспомогательные модули.
- •12. Классическая архитектура ос. Монолитные и многослойные ос.
- •13. Микроядерная архитектура ос.
- •14. Процессы и потоки. Состояния потока
- •15. Планирование и диспетчеризация потоков, моменты перепланировки.
- •16. Алгоритм планирования, основанный на квантовании.
- •17. Приоритетное планирование.
- •18. Алгоритмы планирования в ос пакетной обработки: «первым пришел – первым обслужен», «кратчайшая задача – первая», «наименьшее оставшееся время выполнения».
- •Наименьшее оставшееся время выполнения
- •19. Алгоритмы планирования в интерактивных ос: циклическое, приоритетное, гарантированное, лотерейное, справедливое планирование.
- •Циклическое планирование (квантование)
- •Гарантированное планирование
- •Лотерейное планирование
- •Справедливое планирование
- •Приоритетное планирование
- •20. Алгоритм планирования Windows nt.
- •21. Алгоритмы планирования Linux: о(1), cfs.
- •22. Синхронизация процессов и потоков: цели и средства синхронизации.
- •23. Ситуация состязаний (гонки). Способы предотвращения.
- •24. Способы реализации взаимных исключений: блокирующие переменные, критические секции, мьютексы
- •25. Взаимные блокировки. Условия, необходимые для возникновения тупика.
- •26. Предотвращение взаимоблокировки. Алгоритм банкира для одного вида ресурсов.
- •27. Предотвращение взаимоблокировки. Алгоритм банкира для нескольких видов ресурсов.
- •28. Синхронизирующие объекты ос: системные семафоры, мьютексы, события, сигналы, барьеры, ждущие таймеры.
- •29. Организация обмена данными между процессами (каналы, разделяемая память, почтовые ящики, сокеты).
- •Каналы.
- •Разделяемая память
- •Почтовые ящики
- •Сокеты.
- •30. Функции ос по управлению памятью.
- •31. Алгоритмы распределения памяти без использования внешних носителей (фиксированные, динамические, перемещаемые разделы).
- •Распределение памяти динамическими разделами
- •32. Понятие виртуальной памяти Виртуализация памяти
- •Виртуальное адресное пространство - совокупность виртуальных адресов процесса. И эта совокупность может превышать объем физической памяти.
- •Структура виртуального адресного пространства
- •Виды виртуального адресного пространства:
- •33. Страничное распределение памяти.
- •34. Таблицы страниц для больших объемов памяти.
- •1 Многоуровневые таблицы страниц
- •2 Инвертированные таблицы страниц
- •35. Сегментное распределение памяти.
- •36. Сегментно-страничное распределение памяти.
- •37. Задачи ос по управлению файлами и устройствами.
- •38. Многослойная модель подсистемы ввода-вывода.
- •39. Физическая организация диска. Hdd, ssd устройства.
- •40. Файловая система. Определение, состав, типы файлов. Логическая организация файловой системы.
- •41. Физическая организация и адресация файлов.
- •42. Fat. Структура тома. Формат записи каталога. Fat12, fat16, fat32, exFat
- •43. Ufs, ext2: структура тома, адресация файлов, каталоги, индексные дескрипторы.
- •44. Ntfs: структура тома, типы файлов, организация каталогов.
- •45. Файловые операции. Процедура открытия файла.
- •46. Организация контроля доступа к файлам. Контроль доступа к файлам на примере Unix.
- •47. Отказоустойчивость файловых систем.
- •48. Избыточные дисковые подсистемы raid.
- •49. Многоуровневые драйверы.
- •50. Ускорение выполнения дисковых операций: традиционный дисковый кэш, кэш на основе механизма виртуальной памяти.
- •Классические задачи синхронизации: “производители-потребители”, “проблема обедающих философов”, “проблема спящего брадобрея”.
- •1. Официант
- •2. Иерархия вилок
- •3. Монитор
47. Отказоустойчивость файловых систем.
Отказоустойчивость – способность аппаратных и программных компонентов пк обеспечивать целостность данных при сбоях в работе оборудования или системы. При перезапуске операционной системы после краха большинство данных, хранящихся в файлах на диске, по-прежнему корректны и доступны пользователю. Коды и данные операционной системы также хранятся в файлах, что и позволяет легко ее перезапустить после сбоя, не связанного с отказом диска или повреждением системных файлов. Тем не менее диски также могут отказывать, например, по причине нарушения магнитных свойств отдельных областей поверхности. В данном разделе рассматриваются методы, которые повышают устойчивость вычислительной системы к отказам дисков за счет использования избыточных дисков и специальных алгоритмов управления массивами таких дисков.
Другой причиной недоступности данных после сбоя системы может служить нарушение целостности служебной информации файловой системы, произошедшее из-за незавершенности операций по изменению этой информации при крахе системы. Примером такого нарушения может служить несоответствие между адресной информацией файла, хранящейся в каталоге, и фактическим размещением кластеров файла. Для борьбы с этим явлением применяются так называемые восстанавливаемые файловые системы, которые обладают определенной степенью устойчивости к сбоям и отказам компьютера (при сохранении работоспособности диска, на котором расположена данная файловая система). Комплексное применение отказоустойчивых дисковых массивов и восстанавливаемых файловых систем существенно повышают такой важный показатель вычислительной системы, как общая надежность.
Восстанавливаемость файловых систем
Восстанавливаемость файловой системы — это свойство, которое гарантирует, что в случае отказа питания или краха системы, когда все данные в оперативной памяти безвозвратно теряются, все начатые файловые операции будут либо успешно завершены, либо отменены безо всяких отрицательных последствий для работоспособности файловой системы.
Некорректность файловой системы может возникать не только в результате насильственного прерывания операций ввода-вывода, выполняемых непосредственно с диском, но и в результате нарушения работы дискового кэша. Кэширование данных с диска предполагает, что в течение некоторого времени результаты операций ввода-вывода никак не сказываются на содержимом диска — все изменения происходят с копиями блоков диска, временно хранящихся в буферах оперативной памяти. В этих буферах оседают данные из пользовательских файлов и служебная информация файловой системы, такая как каталоги, индексные дескрипторы, списки свободных, занятых и поврежденных блоков и т. п.
Для согласования содержимого кэша и диска время от времени выполняется запись всех модифицированных блоков, находящихся в кэше, на диск. Выталкивание блоков на диск может выполняться либо по инициативе менеджера дискового кэша, либо по инициативе приложения.
Менеджер дискового кэша вытесняет блоки из кэша в следующих случаях:
· если необходимо освободить место в кэше для новых данных;
· если к менеджеру поступил запрос от какого-либо приложения или модуля ОС на запись указанных в запросе блоков на диск;
· при выполнении регулярного, периодического сброса всех модифицированных блоков кэша на диск (как это происходит, например, в результате работы системного вызова sync в ОС UNIX).
Несмотря на то что период полного сброса кэша на диск обычно выбирается весьма коротким (порядка 10-30 секунд), все равно остается высокая вероятность того, что при возникновении сбоя содержимое диска не в полной мере будет соответствовать действительному состоянию файловой системы — копии некоторых блоков с обновленным содержимым система может не успеть переписать на диск. Для восстановления некорректных файловых систем, использующих кэширование диска, в операционных системах предусматриваются специальные утилиты. Однако объем несоответствий может быть настолько большим, что восстановление файловой системы после сбоя с помощью стандартных системных средств становится невозможным.
Протоколирование транзакций
Проблемы, связанные с восстановлением файловой системы, могут быть решены при помощи техники протоколирования транзакций, которая сводится к следующему. В системе должны быть определены транзакции (transactions) — неделимые работы, которые не могут быть выполнены частично. Они либо выполняются полностью, либо вообще не выполняются.
Пусть к файловой системе поступает запрос на выполнение той или иной операции ввода-вывода. Эта операция включает несколько шагов, связанных с созданием, уничтожением и модификацией объектов файловой системы. Если все подоперации были благополучно завершены, то транзакция считается выполненной. Это действие называется фиксацией (committing) транзакции. Если же одна или более подопераций не успели выполниться из-за сбоя питания или краха ОС, тогда для обеспечения целостности файловой системы все измененные в рамках транзакции данные файловой системы должны быть возвращены точно в то состояние, в котором они находились до начала выполнения транзакции.
Незавершенная операция с диском несет угрозу целостности файловой системы. Каким же образом файловая система может реализовать свойство транзакций «все или ничего»? Очевидно, что решение в этом случае может быть одно — необходимо протоколировать (запоминать) все изменения, происходящие в рамках транзакции, чтобы на основе этой информации в случае прерывания транзакции можно было отменить все уже выполненные подоперации, то есть сделать так называемый откат транзакции.
В файловых системах с кэшированием диска для восстановления системы после сбоя кроме отката незавершенных транзакций необходимо выполнить дополнительное действие — повторение зафиксированных транзакций. Когда происходит сбой по питанию или крах ОС, все данные, находящиеся в оперативной памяти, теряются, в том числе и модифицированные блоки данных, которые менеджер дискового кэша не успел вытолкнуть на диск. Единственный способ восстановить утерянные изменения данных — это повторить все завершенные транзакции, которые участвовали в модификации этих блоков. Чтобы обеспечить возможность повторения транзакций, система должна включать в протокол не только данные, которые могут быть использованы для отката транзакции, но и данные, которые позволят в случае необходимости повторить всю транзакцию.
Для восстановления файловой системы используется упреждающее протоколирование транзакций. Оно заключается в том, что перед изменением какого-либо блока данных на диске или в дисковом кэше производится запись в специальный системный файл — журнал транзакций (log file), где отмечается, какая транзакция делает изменения, какой файл и блок изменяются и каковы старое и новое значения изменяемого блока. Только после успешной регистрации всех подопераций в журнале делаются изменения в исходных блоках. Если транзакция прерывается, то информация журнала регистрации используется для приведения файлов, каталогов и служебных данных файловой системы в исходное состояние, то есть производится откат. Если транзакция фиксируется, то и об этом делается запись в журнал регистрации, но новые значения измененных данных сохраняются в журнале еще некоторое время, чтобы сделать возможным повторение транзакции, если это потребуется.